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About This Report 

It is anticipated that extreme weather events due to climate change will increase the 
prevalence of a number of acute and chronic diseases. As a result, the demand for drugs to 
prevent or treat those conditions is likely to increase. If the anticipated increase in demand for 
these drugs is not planned for, already strained medical supply chains will be further strained, 
resulting in poor health outcomes among affected patient populations and additional costs to 
health systems. 

In this study, we estimated how the anticipated effects of climate change on the prevalence of 
a sample of four chronic conditions will affect demand for drugs needed to treat them. To 
generate these estimates, we conducted an environmental scan of the peer-reviewed and grey 
literature and developed a medical condition–specific systems dynamics model. 
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support their most complex decisions. For more information, see www.rand.org/health-care, or 
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Summary 

We conducted an environmental scan and found that extreme temperatures, precipitation, 
drought, and elevated levels of ground ozone and wildfire-associated air pollution adversely 
affect human health. Many medical conditions are affected by climate change: maternal-fetal 
health, cardiovascular disease, asthma, chronic obstructive pulmonary disease, water and food-
borne infectious diseases, fungal infections, vector-borne illnesses, mental health, cancer, stroke, 
kidney disease, diabetes, and neurodegenerative diseases, such as Alzheimer’s disease. 

In this study, we designed a systems dynamics model to estimate the impact of climate 
change on human health and resultant drug demand, focusing on four conditions: cardiovascular 
disease, asthma, stage 5 chronic kidney disease (also known as end-stage renal disease), and 
Alzheimer’s disease. When selecting conditions to model, we prioritized those that are among 
the most common chronic conditions in the United States and on the top ten list of the leading 
causes of death in the country in 2022. 

For each of these conditions, we identified standard-of-care treatments to model future 
demand: metoprolol, albuterol, heparin, and donepezil. Metoprolol is an antihypertensive drug 
that is used as first-line treatment in many cardiovascular diseases. Albuterol is an inhaled 
bronchodilator that is first-line in the treatment of asthma. Heparin is an anticoagulant required 
for end-stage renal disease patients on hemodialysis. Lastly, donepezil belongs to the anti-
cholinesterase class of drugs that are first-line in the treatment of mild to moderate Alzheimer’s 
disease. With the exception of donepezil, these generic drugs have all experienced past or current 
shortages, hence may be more likely to be susceptible to future shortages. 

The model estimates that climate change may lead to an increase in drug demand for three of 
the four medical conditions. These include asthma, end-stage renal disease, and Alzheimer’s, all 
of which are expected to increase in prevalence due to climate change despite concomitant 
increases in disease related mortality due to climate change. However, demand for metoprolol to 
treat cardiovascular disease is expected to decrease as a result of higher cardiovascular disease 
mortality rates under severe climate change scenarios. These examples highlight the complexity 
of climate change’s potential impacts on health and drug demand. 

The model’s estimations provide a preview of the potential future drug demand under 
varying climate conditions. This and future versions of the model can be used to inform policies 
and innovations for mitigating climate change’s anticipated impact on demand by ensuring 
sufficient drug supply under various climate scenarios. More specifically, these findings can help 
inform development of proactive strategies for identifying supply chain risks and building supply 
chain resiliency—for example, through stockpiling and further diversification of both U.S.-based 
and non-U.S.-based supply chains for high-demand drugs. 
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Chapter 1. Objective and Approach 

Objective 

Climate change is increasing the frequency and intensity of extreme weather events and 
related disasters. Past studies have linked extreme weather events—including extreme hot and 
cold weather—to poor health outcomes and increased demand for health services and drugs used 
to treat conditions that are predicted to become more prevalent with a changing climate (Salas et 
al., 2024). At the same time, drug shortages have been an ongoing public health concern for 
decades and could become more so with the increase in climate-related demand. The U.S. 
government and the private sector—including suppliers, manufacturers, distributors, wholesalers, 
and providers—need a better understanding of how climate change could affect disease burden 
and the demand for drugs. Such information can support advance planning to strengthen medical 
supply chain resiliency. 

We attempted to shed light on these issues by (1) estimating the degree to which disease 
burden will increase in a sample of medical conditions likely to be affected by climate change 
and (2) modeling future demand for a sample of drugs used to treat the sampled conditions. 

Overview of Approach 

We started by conducting an environmental scan of peer-reviewed and grey literature focused 
on the following topics: 

1. the conditions most likely to be affected by climate change and their prevalence 
2. the most common drugs, biologics, and/or medical devices needed to treat those 

conditions and their baseline (i.e., current) demand 
3. any supply chain shortages experienced by these commonly used drugs 
4. models estimating future increases in disease prevalence as a result of climate change. 
This scan helped determine the final sample of four conditions and drugs (one to treat each of 

these conditions). The information gleaned from the above steps served as inputs for a medical 
condition–specific systems dynamics model that we developed to predict demand for those drugs 
in the context of various climate change scenarios (described in Chapter 3). The model estimated 
demand for each drug under various assumptions for climate impact. 

Organization of This Report 

The remainder of this report consists of three chapters and four appendixes. In Chapter 2, we 
present the methods and results for the environmental scan. In Chapter 3, we outline the methods 
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and results for the systems dynamics model. In Chapter 4, we discuss the study findings and 
future directions. We provide further details of our methods and analysis in the appendixes. 
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Chapter 2. Environmental Scan 

We conducted reviews of peer-reviewed and grey literature to gather information required for 
developing a condition-specific systems dynamics model to estimate domestic future drug 
demand under climate change assumptions. In addition to identifying the list of medical 
conditions most likely to be affected by climate change, we identified the types of drugs that are 
most commonly used to treat the medical conditions. We paired the list of conditions with drugs 
that are among first-line treatments for each condition. 

Methods 

Peer-Reviewed and Grey Literature Search Strategies 

Our search strategies (outlined in Appendix A) were structured by key concepts and 
combined to meet the different informational needs of the scan. Initially, we grouped chronic and 
acute health condition search terms using the International Classification of Diseases (ICD) 
standard classification of health categories (World Health Organization [WHO], undated). The 
search focused on the following types of health conditions: respiratory, cardiovascular, 
nephrological, allergies, malignant neoplasms, heat stress disorders, dermatologic, eye 
conditions, reproductive and maternal health, neurologic, mental health and psychiatric, and 
infectious (including vector-borne diseases). 

Then we compiled climate change search terms, including meteorological events and factors 
relating to climate change such as air pollution. We developed a separate search strategy to 
identify existing climate models. This search combined the previous health and climate change 
terms with epidemiologic and statistical terms to inform the model. 

Finally, the drug and pharmaceutical supply and demand terms combined specific drugs, both 
brand name and generic, and terms relating to demand and utilization. 

A professional librarian searched the following electronic databases in April 2024: PubMed, 
Web of Science Core Collection (which consists of Science Citation Index Expanded [SCI-
EXPANDED], Social Sciences Citation Index [SSCI], and Emerging Sources Citation Index 
[ESCI]), ESC Atlas of Cardiology, the Derwent Patents Citation Index (Clarivate), Scopus 
(Elsevier), Academic Search Complete (EBSCOhost), Military Database (ProQuest), and IEEE 
Xplore. We restricted the search strategy for health impacts and climate change to U.S. studies 
published in English between 2014 and 2024. To enable a broader knowledge of the modeling 
literature, we expanded the search to include international studies from 2000 to 2024. Expanding 
modeling literature to include international studies was important because the number of models 
that predict future prevalence of medical conditions in the United States (especially under 
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climate scenarios) are limited. The librarian manually removed duplicates using EndNote’s 
duplicate identification strategy. 

We adapted the above search for the grey literature review, which included the document 
repositories of the WHO, the Centers for Disease Control and Prevention (CDC), the U.S. 
Department of Health and Human Services (HHS), and the U.S. Environmental Protection 
Agency (EPA). 

Results 

Peer-Reviewed and Grey Literature Search Results 

Our peer-reviewed search strategies yielded a total of 1,523 unique articles from the 
combined database results. After the initial screening of titles and abstracts, 80 articles advanced 
to the second level of screening (full-text review). Of these, 67 articles were deemed relevant for 
report inclusion and further analysis. Our grey literature search strategies yielded a total of 122 
unique articles. After the initial screening of titles and abstracts, 103 articles advanced to the 
second level of screening (full-text review). Of these, 41 articles were deemed relevant for report 
inclusion and further analysis. Among the studies that underwent full-article review, the research 
designs were primarily observational. These observational studies varied in the types of the 
methods used and included case-crossover, time series, health impact assessment, ecological, 
cross-sectional, surveillance, cohort, case control designs, review articles, and modeling studies. 

Climate Threats and Health 

Climate change presents significant health threats to human populations around the globe. 
Increasing atmospheric carbon dioxide and other greenhouse gases are driving an increase in the 
earth’s temperature. These climatologic factors affect the prevalence of both acute illnesses, such 
as infectious diseases, and chronic diseases through the effects of temperature, humidity, and 
other weather-related phenomena on pathogens, vectors, animal hosts, land use, and migration 
(Edelson et al., 2023). Both hot and cold temperature extremes have been associated with 
increased morbidity and mortality (Gasparrini et al., 2015; Gronlund et al., 2018). Recent longer 
and more-severe heatwaves have proven to be especially fatal (DHHS, undated). Thunderstorm-
related atmospheric changes can trigger acute respiratory illnesses and are anticipated to become 
more frequent as temperatures rise. Drought and high winds can circulate increased levels of 
particulate matter, such as PM2.5 (particles that are 2.5 microns or less in diameter that can 
travel deep into the respiratory tract), leading to respiratory illness and increased all-cause 
mortality (Abadi et al., 2022; Sun et al., 2015). Particulate matter, which can be a component of 
air pollution and wildfires, has been associated with higher atmospheric concentrations of carbon 
dioxide, which can lead to increased pollen production and a prolonged pollen season. 
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Climate change has been identified as a major contributor to the increasing frequency and 
size of wildfires, and it has also been shown to exacerbate flood risks in U.S. coastal regions that 
pose various risks to human health (National Oceanic and Atmospheric Administration, National 
Centers for Environmental Information [NOAA], 2023), such as exposure to waterborne 
pathogens (Levy, Smith, and Carlton, 2018). Furthermore, climate change has been associated 
with a rise in surface ozone levels that, in turn, have been associated with increased mortality 
(Sun et al., 2015; Alexeeff, Pfister, and Nychka, 2016). 

The extent to which extreme weather risks affect human health may be determined by the 
nature of the physical hazards, such as heat and wind; the extent of a population’s exposure to 
the hazard; the vulnerability of the population; and the resiliency of the affected community. 
Regardless of the type of weather event, all types of extreme weather can result in infrastructure 
and/or societal disruption. Furthermore, extreme weather events can result in extremely high 
economic costs to the United States. As of July 2024, the cost of weather-related disasters in the 
United States has already reached $37.9 billion in 2024 alone (NOAA, National Centers for 
Environmental Information, 2024). 

Climate-Vulnerable Health Conditions in the United States 

A number of health conditions are particularly vulnerable to the effects of climate change— 
although the mechanisms for these vulnerabilities are not always well understood. Climate 
change is expected to increase the prevalence of these conditions, and people with these 
conditions are more susceptible to climate change’s adverse effects. Below, we discuss examples 
of those conditions for which there is evidence for negative impact from climate change as 
reported in U.S.-based studies. Given differences in population demographics and disease 
prevalence in other countries compared to the United States, we base the discussion of the effect 
of climate-vulnerable conditions in the United States exclusively on U.S.-based studies. 

Cardiopulmonary Disease 

Heat, wildfire smoke, air pollution, and elevated ozone levels can all exacerbate 
cardiopulmonary stress. Extreme temperatures have been associated with increased risk of 
various cardiovascular conditions, such as myocardial infarction (i.e., heart attacks) (Rowland et 
al., 2020), and increased risk of adverse outcomes for stroke and other cardiovascular diseases 
(CVDs) (Mazidi and Speakman, 2020). Several direct and indirect mechanisms are responsible 
for these effects. Higher temperatures lead to higher surface blood circulation and sweating, both 
of which contribute to higher levels of strain on the heart. Furthermore, high temperatures may 
lead to sleep disturbances and decreased physical activity, both of which increase the risk of 
CVD. Both high and low temperatures have been reported to increase risk of coagulopathy (i.e., 
clot formation), which can facilitate cardiovascular events (Levi, 2018). 

Increased levels of air pollution are linked to higher risk of acute coronary syndrome, 
peripheral artery disease, cardiac arrhythmia, and heart failure (Rowland et al., 2019, Mazidi and 
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Speakman, 2020). Climate change also amplifies the adverse health effects of diabetes (a risk 
factor for CVD) (Al‐Shihabi, Moore, and Chowdhury 2023). For example, a Commonwealth of 
Virginia–based study showed an association between cold weather and increased diabetes-related 
emergency department (ED) visits (Davis, Driskill, and Novicoff, 2022). 

Wildfire smoke is associated with poor respiratory outcomes as well, such as decreased lung 
function among people with and without preexisting asthma (Wilgus and Merchant, 2024). 
Exposure to extreme heat and precipitation events is associated with increased asthma-related 
hospitalizations (Soneja et al., 2016). Furthermore, dust outbreaks that worsen particulate matter 
air pollution have been associated with chronic obstructive pulmonary disease (COPD) 
exacerbations (Gutierrez et al., 2020). 

Kidney Disease 

The prevalence of chronic kidney disease (CKD) has increased over the past two decades 
(Kovesdy, 2022), especially in areas with chronic heat stress and air pollution. Dehydration 
secondary to heat stress is one mechanism that can worsen poor kidney function. A study of 2 
million U.S. veterans found that exposure to increased PM2.5 and gaseous pollutants, in addition 
to exacerbating many of the risk factors associated with kidney disease, such as hypertension and 
diabetes, led to the progression of CKD and renal failure (Rasking et al., 2022). One hypothesis 
to explain this effect is that particulate matter entering the bloodstream can result in pathological 
changes in the kidneys (Tavera Busso et al., 2018). Among patients with CKD, extreme heat has 
been associated with increased hospitalizations and mortality (Remigio et al., 2019). 

Mental Health and Neurological Diseases 

Climate-related events such as wildfires have been associated with increased risk for mental 
health conditions (Clayton, 2021), such as major depressive disorder, posttraumatic stress 
disorder, and generalized anxiety disorder (Wettstein and Vaidyanathan, 2024; Monsour et al., 
2022). 

Exposure to heat stress in an animal model study was associated with “misfolding” of brain 
proteins—a process by which the shape of a protein changes—causing protein aggregation. In 
the context of heat exposure, one can postulate that similar processes in humans may lead to 
increasing prevalence of Alzheimer’s disease (Bongioanni et al., 2021). Individuals with 
neurological disorders such as Alzheimer’s disease are also at increased risk of health 
complications due to extreme heat largely because of an inability to take steps to protect 
themselves from heat exposure. Furthermore, extreme heat can result in dehydration and increase 
the risk of infection and kidney disease in this population (Stella et al., 2023). Concerns have 
been raised for similar risks from heat waves among individuals with other neurodegenerative 
diseases, such as Parkinson’s disease and motor neuron diseases (Bongioanni et al., 2021). 
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Infectious Diseases 

Lyme disease, a tick-borne disease and the most common vector-borne illness in the United 
States, has been found to have earlier annual disease onset (Monaghan et al., 2015), and warmer 
temperatures have been reported to contribute to the expanding habitat of the Lyme-carrying tick 
putting more people at risk. Past outbreaks of West Nile Virus, another vector-borne infectious 
disease, have been attributed to stagnant water reservoirs and elevated temperatures in the 
context of drought (Limaye et al., 2019). 

Exposure to storm-related flooding has been associated with a rise in Shiga toxin-producing 
Escherichia coli (E. coli) infections and an increase in Legionnaires’ disease and cases of 
cryptosporidiosis (Lynch and Shaman, 2023). Prior research has shown an association between 
extreme precipitation and waterborne diseases such as Salmonellosis (Morgado et al., 2021) and 
Vibrio vulnificus infections (Archer et al., 2023). One study demonstrated a potential association 
between climate-mediated flooding and Clostridium difficile infections (Lin, Wade, and Hilborn, 
2015). 

Fungal infections have also been reported to be on the rise as a result of climate change. For 
example, rising heat and moisture may be creating ideal conditions for the growth of the 
Coccidioides fungus—the organism responsible for Valley Fever—and contributing to an 
increased incidence of infections in previously unaffected regions (Gorris et al., 2019). Valley 
Fever outbreaks may be associated with severe dust storms that increase dust concentrations and 
disperse the fungus. 

Maternal-Fetal Health 

Heat exposure throughout pregnancy puts women at risk of heat illness and heat stroke 
(CDC, undated-b). Exposure to temperature extremes increases the risk of cardiovascular 
complications for pregnant women during labor and delivery (Ha et al., 2017). Extreme 
temperatures have also been associated with an increased risk of poor fetal growth (Sun et al., 
2019) and stillbirths (Ha et al., 2017). 

Cancer 

Existing literature raises concerns about a potential link between a warming planet and 
increased incidence of skin cancer (Parker, 2021). Furthermore, wildfires have been reported to 
increase the concentration of hazardous air pollutants—chemicals that are known or suspected 
carcinogens (Rice et al., 2023; Tee Lewis et al., 2023). 

Climate-Vulnerable Populations and Locations 

The effects of climate-related weather events are widespread and certain populations and 
locations are particularly vulnerable to their impacts (Tee Lewis et al., 2023; Zhang et al., 2019). 
Children (Leffers, 2022), pregnant women (Ha et al., 2017), and older adults (Carnes, Staats, and 
Willcox, 2014) are particularly vulnerable to the health effects of climate change. Overall, 
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climate change disproportionately affects the health status of people of color because of 
socioeconomic inequities (Flores et al., 2020) and health care disparities (Berberian, Gonzalez, 
and Cushing, 2022; Guirguis et al., 2018). In the context of climate change, these vulnerable 
populations are at greater risk because of higher exposure to climate threats and lack of ability 
and/or resources to prepare, adapt, and recover from climate-related extreme weather events (Tee 
Lewis et al., 2023). 

Depending on the specific geographic region in the United States, the nature and severity of 
climate threats vary. Furthermore, certain localities may be at higher risk. An important example 
is extreme heat in urban centers, which is a major environmental health stressor. Urban heat 
events are those above the 90th percentile of historical temperatures for a given location and are 
exacerbated by the “urban heat island” phenomenon (Howard, 2012; Debbage and Shepherd, 
2015). The urban heat island refers to the strong correlation between urban environments and 
high temperatures stemming from impermeable urban surfaces, human activity, and the relative 
paucity of green environments (such as grass and trees) to mitigate rising temperatures. 
Furthermore, risk of extreme precipitation (for example, in the setting of hurricanes) is variable 
across the United States, with coastal areas being at highest risk (Federal Emergency 
Management Agency, undated). 

Climate Effects on Demand for Health Services and Drugs 

Severe weather events can also disrupt health systems and access to services—for example, 
through surges in patient volumes or impeded physical access to health facilities (Flores et al., 
2020). Delayed access to health services and needed drugs can result in acute exacerbation of 
chronic conditions, such as asthma, diabetes, and congestive heart failure, leading to a need for 
ED services or hospitalization. A study of 42 large disasters in the United States found an 
increase in ED visits among Medicare beneficiaries in the week following the event in affected 
counties (Salas et al., 2024). 

Climate Effects on Medical Supply Chains 

Medical supply chains are sensitive to disruptions, such as those resulting from natural 
disasters. After a natural disaster, there is a surge in disease burden and demand for related 
drugs, making timely access to health care facilities and medical treatment critical. Furthermore, 
extreme weather-related events can interrupt manufacturing and/or delivery of medical supplies 
to end users. Increased demand for drugs and challenges with insufficient supplies in the context 
of extreme weather climate events can affect access to time-sensitive treatments. 

According to the U.S. Food and Drug Administration (FDA), about a quarter of drug 
shortages in the United States in 2023 were due to increased drug demand (FDA, 2024). Other 
reasons for drug shortages in that year included delays in shipment, active ingredient shortages, 
and manufacturers not complying with practice standards. Currently, the FDA does not have the 
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authority to require manufacturers to report shortages that are likely due to increases in demand 
for drugs, making mitigating drug shortages more challenging. 

Increased demand in the context of climate-related events can compound existing drug 
shortages (Kolbe and Beleche, 2024; NASEM, 2022). Such shortages may be exacerbated 
during, or even as a result of, public health emergencies (for example, during the coronavirus 
disease 2019 [COVID-19] pandemic and in the aftermath of Hurricane Maria). Extreme weather 
events may hinder production of drugs and/or the “last mile” delivery of the products to end 
users (Kolbe and Beleche, 2024; NASEM, undated; NASEM, 2022). 
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Chapter 3. Systems Dynamics Model 

To understand how climate change might affect future demand for drugs, we developed a 
systems dynamics framework that can simulate and predict demand under various climate change 
scenarios (Homer and Hirsch, 2006). Through the simulation framework and scenario analysis, 
the model provides initial but valuable insights into the possible health impacts of climate 
change, and resultant changes in demand for drugs, which can help support informed 
decisionmaking for emergency preparedness and build supply chain resiliency. The model 
produces four key outcomes: (1) quantitative estimates of changes in prevalence of select 
medical conditions; (2) estimates of mortality due to specific climate change impacts; (3) 
identification of age groups most likely to be affected by climate change impacts; and (4) 
estimates of changes in demand for the sampled drugs used in treating the medical conditions 
under different climate change scenarios. 

This chapter describes the sampling strategy for medical conditions and products that are the 
focus of the modeling effort, model design, inputs, assumptions, and limitations, and then 
presents the results of the analyses. Additional technical details about the model and data inputs 
are available in Appendixes B, C, and D. 

Methods 

Medical Condition and Drug Sampling Strategies 

Our environmental scan yielded literature indicating that the following health conditions are 
climate-vulnerable: maternal-fetal health, CVD, asthma, COPD, water- and food-borne 
infectious diseases, fungal infections, vector-borne illnesses, mental health, cancer, stroke, 
Alzheimer’s disease and other neurodegenerative diseases, kidney disease, and diabetes. From 
this list, we selected asthma, CVD, end-stage renal disease, and Alzheimer’s, as described in 
more detail below. These are among the most common chronic diseases in the United States and 
among the top ten leading causes of death in the country. Furthermore, we prioritized conditions 
with related drugs that are first-line treatments and that had experienced past and/or current 
shortages according to the 2022 report Essential Medicines Supply Chain and Manufacturing 
Resilience Assessment (Next Foundry for American Biotechnology, Advanced Regenerative 
Manufacturing Institute, and Nexight Group, 2022), which was sponsored by the Administration 
for Strategic Preparedness and Response (formerly the Office of the Assistant Secretary for 
Preparedness and Response). 

We used three criteria to sample the drugs used to treat the selected medical conditions. We 
prioritized drugs that are considered standard-of-care in the treatment of each medical condition, 
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those that have experienced past and/or current shortages, and those with existing data regarding 
their baseline annual utilization in the United States. We also worked to select drugs that are 
largely indicated for the selected conditions or family of conditions. With these criteria, we 
selected four drugs: albuterol, metoprolol, heparin, and donepezil. All the sampled drugs have 
experienced past and/or current shortages, except for donepezil (Next Foundry for American 
Biotechnology, Advanced Regenerative Manufacturing Institute, and Nexight Group, 2022). 

Cardiovascular Disease and Metoprolol 

CVD refers to diseases of the heart and blood vessels (American Heart Association, 
undated). The term CVD includes a number of diseases, including coronary artery disease, 
congestive heart failure, stroke, and arrhythmia, among others (Cleveland Clinic, undated). CVD 
is among the most common chronic diseases in the United States and is the leading cause of 
death in the nation (CDC, undated-a; CDC, undated-c). Approximately 5 percent of Americans 
20 years of age and older suffer from one or more forms of CVD (Tsao et al., 2023). 

Metoprolol belongs to the beta-blocker class of anti-hypertensive drugs (Harvard Medical 
School, undated). Hypertension, or elevated blood pressure, is a risk factor for coronary artery 
disease, stroke, congestive heart failure, and other CVDs (Fuchs and Whelton, 2020). Therefore, 
metoprolol is used in patients with hypertension and for heart rate control (for example, in 
patients with atrial fibrillation) and for the treatment of congestive heart failure. Metoprolol is 
administered in oral and intravenous formulations (Medical News Today, undated). 

Asthma and Albuterol 

Asthma is a chronic condition that affects lung airways. It is among the most common 
chronic diseases in the United States (CDC, undated-c). As of 2021, 7.7 percent of the U.S. 
population suffered from asthma (National Center for Health Statistics, 2024). 

Albuterol is a short-acting inhaled beta-agonist and is first-line in the treatment of individuals 
with asthma diagnosis (National Center for Biotechnology Information, undated-a). Albuterol is 
most commonly administered in powder form using an inhaler or in liquid form through an oral 
nebulizer (Straight Nursing, undated). 

End-Stage Renal Disease and Heparin 

CKD results from damage to the kidneys over time that prohibits the kidneys from 
effectively filtering blood (NIDDK, undated-b). If a kidney transplant is not possible or 
available, renal replacement therapy (RRT) through hemodialysis or peritoneal dialysis is the 
preferred treatment for patients with stage 5 CKD—also referred to as end-stage renal disease 
(ESRD). In the United States, about every two in 1,000 people have ESRD (NIDDK, undated-a). 
Patients with ESRD on hemodialysis generally need three sessions per week to ensure normal 
electrolyte levels in the bloodstream (National Kidney Foundation, undated). The absence of 
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hemodialysis, or missed sessions, can lead to electrolyte imbalances that can result in cardiac 
arrhythmia and death (National Kidney Foundation, undated). 

Hemodialysis requires unfractionated heparin to prevent clotting during the procedure 
(Cronin and Reilly, 2010; National Center for Biotechnology Information, undated-b). However, 
heparin is used in many other contexts to prevent clotting. 

Alzheimer’s Disease and Donepezil 

Alzheimer’s disease is a neurodegenerative disease and a type of dementia (Alzheimer’s 
Association, undated). It is among the top ten leading causes of death in the United States (CDC, 
undated-c). 

Donepezil belongs to the cholinesterase inhibitor class of drugs that are considered first-line 
in the treatment of mild to moderate Alzheimer’s disease (National Institute on Aging, undated). 

Model Overview 

We developed estimates for future drug demand from 2024 projected to 2040 under different 
climate impact assumptions for the four drugs, each considered first-line in treating one of four 
sampled conditions likely to be affected by climate change. Our approach utilizes a systems 
dynamics framework based on ordinary differential equations (ODEs) to simulate and predict 
future drug demand on a daily time scale. This method emphasizes causal relationships, dynamic 
interactions, and feedback loops. Systems dynamics models are deterministic (as opposed to 
stochastic), simulate continuous time (as opposed to discrete time), and incorporate transition 
rates between simulated states (as opposed to transition probabilities) (Einzinger, Leskovar, and 
Wytrzens, 2012). Using information from our environmental scan, we estimated medical 
condition prevalence trends and related drug demand time trends. Historical data informed the 
ranges of values for each model parameter, and we estimated the impact of key variables, such as 
temperature, precipitation, and air quality on disease prevalence (please see the subsection on 
“Climate Impacts”). 

The core of our model consists of coupled ODEs that describe the rate of change in drug 
demand, accounting for climate change effects. To estimate demand changes specific to climate 
change effects, we developed a baseline model that assumes no change from current climate 
conditions but incorporates non-climate-related changes in disease prevalence and incidence 
rates, all-cause and disease-specific mortality rates, and population by age group. Details on the 
data sources and modeling approaches for each of these input variables is available in Appendix 
C. Given initial conditions, such as the initial prevalence of the disease and hazard rates for the 
risk of developing the disease across different age groups, the model integrates these dynamics to 
predict future prevalence, from which we can then derive the future demand for specific drugs. 

To account for climate change scenarios and make comparisons relative to the baseline 
scenario, we adjusted the hazard rates for developing the diseases, all-other-cause mortality, and 
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disease-specific mortality based on specific factors related to climate change factors. This was 
done through a two-step approach: 

1. First, using estimates from the literature, we linked temperature projections under five 
emissions scenarios to three key climate factors: days of extreme heat, number of 
hurricanes reaching the U.S. mainland, and wildfire-associated air quality changes 
(increases in PM2.5 and ozone levels). 

2. Second, we used statistical estimates from the literature to link these four climate factors 
to associated changes in health outcomes, including all-cause mortality, disease-specific 
mortality, and incidence rates of the sampled medical conditions. 

The model integrates the modified hazard rates, mortality rates, and incidence rates assumed 
under various climate change scenarios, and, to account for uncertainties, we sampled the 
parameter values within their estimated uncertainty ranges. We ran 100 different simulations for 
each climate change scenario (detailed under “Model Outputs,” below) to generate a 
comprehensive set of possible outcomes and explore a wide range of potential future climate 
conditions. 

Model Design 

The model design applied to all four diseases is identical. However, the models for each 
disease are informed by different data sources and inputs that influence how the various factors 
affecting the prevalence of these diseases change with climate change. For more information on 
the specific data sources and inputs used for each medical condition, see Appendix C. 

Our model operates on a daily time scale from 2024 to 2040. As shown in Figure 3.1, our 
model consists of three compartments representing different states and population groups: the 
presumed Healthy Population (H), which includes all individuals not diagnosed with the disease; 
the Diagnosed and Treated Population (T), which consists of individuals diagnosed with the 
disease and receiving treatment; and the Deceased Population (D), which includes individuals 
who have died from any cause, including deaths attributable to the disease of interest. The model 
predicts the number of individuals in each compartment over time, broken down by age group. 
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Figure 3.1. Illustration of Model Compartments and Relationships

 





NOTE: 𝜋 is the rate at which individuals enter the healthy population through migration or birth. Individuals from the
healthy population compartment (H) may die or receive a diagnosis for the medical condition and treatment and 
ultimately die. The rate at which individuals from the healthy population compartment die from any cause is 
represented by 𝜇. The transition of individuals from the healthy compartment to the diagnosis and treated
compartment is governed by age-specific hazard rates denoted by 𝜆. The transition of individuals from the diagnosed 
and treated compartment (T) to the compartment of deceased population (D) is designated by 𝜇 plus 𝜇 where 𝜇is
the rate at which individuals from the healthy population compartment die and 𝜇is the condition-specific mortality 
rate. 

Climate Impacts 

The model produces estimates of future disease prevalence across five climate scenarios, 
based on the Shared Socioeconomic Pathways (SSPs) developed in the Intergovernmental Panel 
for Climate Change’s (IPCC’s) Sixth Assessment Report (Masson-Delmotte et al., 2021). The 
SSPs are a set of five scenarios used by the IPCC to estimate future greenhouse gas (GHG) 
emissions under different levels of adoption of climate change mitigation and adaptation policies 
(Table 3.1). For the purposes of this study, these scenarios can be understood as being organized 
in order of least to highest severity of climate change. 
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Table 3.1. Climate Scenarios Used in the Model 

Scenario Name Scenario Description 

Mean Global Temperature Change 
by 2040 

(relative to 2024, degrees Celsius) 

SSP 1–1.9 Very low GHG emissions: 
CO2 emissions reach net zero around 2050 

0.228 

SSP 1–2.6 Low GHG emissions: 
CO2 emissions reach net zero after 2050 

0.297 

SSP 2–4.5 Intermediate GHG emissions: 
CO2 emissions around current levels until 2050 

0.379 

SSP 3–7.0 High GHG emissions: 
CO2 emissions double by 2100 

0.457 

SSP 5–8.5 Very high GHG emissions: 
CO2 emissions double by 2050 

0.556 

SOURCE: Scenario descriptions from Arias et al. (2021); mean global temperature changes derived from EPA 
(undated-c) and Masson-Delmotte et al. (2021). 

Our model focused on four climate change factors that could be linked to health outcomes: 
extreme heat days, hurricanes making landfall in the United States, and wildfire-associated 
changes in air quality (including PM2.5 and ozone) (Table 3.2). While these are not the only 
climate-related events that may affect our medical conditions of interest, these four indicators 
were chosen based on the availability of data and existing research examining their effect on 
human health. In order to translate global temperature changes under each climate change 
scenario (Table 3.1) to changes in our four climate factors of interest, we first modeled U.S. 
temperature change as a function of global temperature change. Then, using historical 
temperature and climate data, we modeled future frequency of extreme heat days, number of 
hurricanes making landfall in the United States, and wildfire extent (thus wildfire-associated air 
quality changes). Additional details on the data sources and methods used to develop these 
estimates are available in Appendix C. 

Table 3.2. Indicators Used to Represent Exposure to Climate Threats 

Climate Event Indicator 
Extreme heat • Annual number of extreme heat days 
Precipitation • Annual number of hurricanes making landfall in the 

United States 
Air quality • Average annual concentration of wildfire-related PM2.5 

• Average annual concentration of wildfire-related ozone 

Climate-Health Linkages 

Estimates of the four climate threats above were then linked to disease-specific incidence and 
mortality using estimates from the literature. In some cases, the literature provided specific 
evidence for the relationship between event exposure and a health outcome (e.g., the relative risk 
of asthma mortality during a heat wave). In other cases, we had to use proxies such as condition-
related hospitalizations due to a climate event to estimate our outcome variables. Full 
descriptions of each data source and linkage methodology used are available in Appendix C. 
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Model Outputs 

To capture the relationships between temperature changes, extreme weather manifestations, 
and the outcomes of interest, we employ an experimental design incorporating a large sample of 
parameter values. Each relationship is characterized by estimates with uncertainty bounds. For 
our study, we generated 100 unique combinations of parameter values, each sampled within its 
specified uncertainty range. The 100 unique parameter combinations are sampled using the Latin 
Hypercube approach (Iman, Helton, and Campbell, 1981). This method efficiently explores the 
uncertainty space, ensuring a homogeneous sample consistent with the specified probability 
distribution functions for each input parameter. The model varied parameters linking climate 
effects to the manifestations of extreme weather events, and subsequently to disease-specific 
incidence and mortality rates, as well as all-cause mortality rates. The baseline scenario does not 
include variability since it assumes no climate change effects, keeping input parameters constant. 

The model outputs include (1) the total population of healthy people, which includes 
individuals who have not been diagnosed with the disease, by age; (2) the prevalence of the 
disease, encompassing all individuals who have been diagnosed, categorized by age group; (3) 
the total aggregate number of deaths, accounting for both deaths caused by the disease and those 
from all other causes. Changes in prevalence estimates are considered equivalent to the future 
change in demand for the relevant medical products. 

Assumptions and Limitations 

Our systems dynamics model, like all models, approximates reality and has limitations due to 
strategic simplifications, often driven by the lack of precise data. These simplifications should be 
considered when interpreting the results and should be addressed in future model iterations. 
Future work could focus on modeling efforts that address these limitations through refinement 
and research. 

First, there are limitations in our modeling approach that arise from using a systems 
dynamics model. Our model’s dynamics are governed by a set of coupled ODEs that describe the 
population flows between compartments over time. This approach employs a deterministic 
framework, predicting the average population dynamics without accounting for random 
variations or individual differences within a given model compartment. Instead of tracking each 
individual separately, the model deals with population densities, focusing on the proportion or 
number of people in each compartment rather than following individual trajectories. The 
population is divided into compartments, each representing a specific state or condition (e.g., 
healthy, diagnosed). The model assumes that everyone within a compartment is identical in 
terms of health status and behavior, with transitions between compartments occurring according 
to predefined rates influenced by environmental factors and interventions. This does not take into 
account individual risk factors such as body mass index (BMI), differences in treatment 
adherence, disease exacerbation or natural progression, or health impacts on the undiagnosed 
population. The model also does not account for seasonal variation in disease incidence or 
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mortality. Similarly, the model assumes that new births and immigrants are healthy and do not 
have a pre-existing disease diagnosis. Each of these simplifications may lead to over- or 
underestimation of disease prevalence and therefore future drug demand. 

The model is also limited by the availability and granularity of relevant climate and health 
data sources. For example, we were unable to incorporate subnational geographic variation in 
climate variables. These heterogeneities were averaged in our model, resulting in broad error 
bounds in parameter estimates. In addition, we focused on a limited set of climate factors based 
on data availability; however, these do not provide a comprehensive picture of potential health 
impacts of climate change. Future work might identify additional data sources to incorporate a 
wider range of climate factors into future models. 

Similarly, the limited number of studies examining the impacts of climate-related events on 
disease-specific incidence and mortality necessitated some simplifications and assumptions. For 
some of the medical conditions, we were unable to find direct data linking the extreme weather 
event in question with the incidence of the relevant disease; in such cases, we used proxies such 
as hospitalizations, disease events, or disease exacerbations and assumed that the rate of increase 
in true incidence would be similar to the proxy (see Appendix C). This may result in 
overestimations of future prevalence because hospitalizations can occur multiple times, unlike 
the one-time event of disease diagnosis, and in the case of Alzheimer’s disease, the extreme 
weather event may not lead to the development of the disease; rather it may cause adverse 
reactions that require the patient to seek medical attention. 

The model builds on existing prevalence, incidence, and mortality data. While mortality data 
for each condition are available, incidence data are harder to obtain. Where incidence data were 
unavailable, we assumed stable prevalence based on historical data (see Appendix C). Self-
reported prevalence data, as was used for CVD and estimates, may be less reliable than incidence 
or mortality data. Future work might explore additional data sources for these inputs to enhance 
robustness of the model. 

Finally, the model focuses on future demand for one drug to treat each medical condition. 
Each of these medical conditions have other potential treatment options that are not accounted 
for in our model. The choice of drug used in the model is largely illustrative, as our model 
estimates demand as a function of disease prevalence. In reality, large increases in demand for 
specific drugs may result in shifts to alternative products. Future models might explore the more 
complex dynamics of how demand for all drugs treating a given medical condition might shift 
due to climate change impacts. 

Results 

The model produced estimates of disease prevalence, all-cause mortality, and drug demand 
for four diseases across five climate scenarios. Overall, the model estimated increases in 
prevalence relative to the baseline scenario for three of the four modeled diseases: asthma, 
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ESRD, and Alzheimer’s. In contrast, the model estimated decreases in prevalence relative to the 
baseline scenario for CVD due to increased mortality in older age groups due to climate change 
factors. These modeled changes in disease prevalence translate into parallel changes in drug 
demand, with a decreased overall demand for metoprolol (CVD), but increased overall demand 
for albuterol (asthma), heparin (ESRD), and donepezil (Alzheimer’s). 

For each disease, we developed three key plots to illustrate our findings. The first plot (3.2a, 
3.3a, 3.4a, 3.5a) shows the projected percentage change in disease prevalence from the initial 
year (2024) to the final year (2040) across all age groups. These plots show changes in 
prevalence relative to the baseline (no change in climate variables), highlighting those changes in 
future prevalence that can be attributed to the climate variables in the model. In these plots, we 
use a yellow and orange palette for the colored bands to illustrate the range of projected 
prevalence estimates under selected climate change scenarios. The concentration of orange in the 
fan indicates where the majority of these trajectories lie, representing the median, while the 
yellow areas depict the less likely trajectories. Appendix D shows the estimated absolute change 
in prevalence stratified by age group. 

The second plot for each disease (3.2b, 3.3b, 3.4b, 3.5b) shows the projected percentage 
change in total aggregate deaths from the initial year (2024) to the final year (2040) across all 
age groups. This plot includes deaths due to the specific disease being modeled and other cause 
mortality. In these plots, we use a blue and violet palette for the colored bands to illustrate the 
range of projected total deaths under selected climate change scenarios. The concentration of 
violet in the fan indicates where the majority of these trajectories lie, representing the median, 
while the blue areas depict the less likely trajectories. Appendix D shows the estimated 
percentage change in total aggregate deaths stratified by age group. 

In each of these two sets of figures (Figures 3.2a, 3.2b, 3.3a, 3.3b, 3.4a, 3.4b, 3.5a, and 3.5b), 
the lines represent seven specific case runs of the model dynamics. We made the choice to select 
seven case runs at random. The seven lines are not indicative of climate scenarios but rather 
serve as illustrative examples of individual trajectories. The close agreement between the lines 
and the bands is a feature of the deterministic model used, though this is not always the case. 

The third plot (3.2c, 3.3c, 3.4c, 3.5c) is a box plot showing the percentage change in demand 
for the specific drug associated with each disease in the final year (2040) relative to the baseline 
(2024) scenario demand across all age groups. Each boxplot shows the distribution of demand 
estimates generated across the 100 model runs for each climate scenario. 

Climate Change and Demand for Metoprolol 

Figures 3.2a–3.2c present the results of the CVD/metoprolol model. Aggregated across all 
age groups (Figure 3.2a), overall prevalence is estimated to be slightly lower than in the baseline 
scenario. This is driven by increased disease-specific and general mortality under climate change 
scenarios, as shown in Figure 3.2b. Overall, these changes in prevalence and mortality result in 
an estimated decrease in demand for metoprolol by 0.4 percent to 0.9 percent (Figure 3.2c). 
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Figure 3.2a. Results of Cardiovascular Disease/Metoprolol Model: Projected Percentage Change in 
CVD Prevalence Compared to Baseline Under All Climate Change Scenarios and All Age Groups, 

2024–2040 

NOTE: Yellow and orange areas = range of projected prevalence estimates under selected climate scenarios; orange 
= more likely trajectory, yellow = less likely trajectory. Blue lines = randomly selected model runs. 
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Figure 3.2b. Results of Cardiovascular Disease/Metoprolol Model: Projected Percentage Change in 
Total Deaths Compared to Baseline Under All Climate Change Scenarios and All Age Groups, 

2024–2040 

NOTE: Blue and violet areas = range of projected total deaths under selected climate scenarios; violet = more likely 
trajectory, blue = less likely trajectory. Blue lines = randomly selected model runs. 
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Figure 3.2c. Results of Cardiovascular Disease/Metoprolol Model: Predicted Percentage Change in 
Demand for Metoprolol (2040) 

Analyzing the CVD model by age group results reveals nuanced impacts across different age 
groups under various climate change scenarios (Appendix D). Under the baseline scenario, CVD 
prevalence is projected to moderately increase for the three younger age groups (ages 20–64 
years), with the trend stabilizing around 2035. In climate change scenarios, this increase becomes 
slightly more pronounced, as extreme weather events affect incidence rates more than mortality 
rates. For the three older age groups (ages 65 and above), baseline projections indicate a 
significantly greater increase in CVD prevalence, likely due to the aging population. Initially, 
under climate change scenarios, the rise in incidence rates is counterbalanced by higher mortality 
rates. However, in the oldest age group (85+), the increase in mortality rates eventually 
outweighs the rise in incidence rates. Changes in estimated demand for metoprolol by age group 
would be expected to mirror the changes in prevalence. 

Climate Change and Demand for Albuterol 

Figures 3.3a–3.3c present the results of the asthma/albuterol model. Aggregated across all 
age groups (Figure 3.3a), overall asthma prevalence is estimated to increase relative to the 
baseline scenario. Similarly, aggregate deaths from asthma and other causes are expected to rise 
under all climate change scenarios, driven by increased disease-specific and general mortality 
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(Figure 3.3b). Overall, these changes in prevalence and mortality result in an estimated increase 
in demand for albuterol by 1.5 percent to 3 percent (Figure 3.3c). 

Figure 3.3a. Results of Asthma/Albuterol Model: Projected Percentage Change in Asthma 
Prevalence Compared to Baseline Under All Climate Change Scenarios and All Age Groups, 2024– 

2040 

NOTE: Yellow and orange areas = range of projected prevalence estimates under selected climate scenarios; orange 
= more likely trajectory, yellow = less likely trajectory. Blue lines = randomly selected model runs. 
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Figure 3.3b. Results of Asthma/Albuterol Model: Projected Percentage Change in Total Deaths 
Compared to Baseline Under All Climate Change Scenarios and All Age Groups, 2024–2040 

NOTE: Blue and violet areas = range of projected total deaths under selected climate scenarios; violet = more likely 
trajectory, blue = less likely trajectory. Blue lines = randomly selected model runs. 
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Figure 3.3c. Results of Asthma/Albuterol Model: Predicted Percentage Change in Demand for 
Albuterol Across All Age Groups (2040) 

As Figure D.2 in Appendix D shows, the impact of climate change on asthma prevalence 
varies by age group. In younger age groups (ages 0 to 4 and 5 to 14 years), the relative decrease 
or stabilization in asthma prevalence seen under the baseline scenario (without climate change) is 
disrupted. Climate change may prevent these decreases, potentially maintaining or even 
increasing prevalence in these age groups. In the 15 to 24 year age group, where prevalence 
peaks in the baseline scenario, climate change could prolong or intensify these peaks. For 
individuals aged 25 years and older, climate change is projected to significantly increase asthma 
prevalence, surpassing baseline expectations due to both exacerbation effects and demographic 
shifts. In contrast, for the older age group (65+ years), climate change may lead to a decrease in 
asthma prevalence, primarily due to increased mortality rates. Changes in demand for albuterol 
by age group would be expected to mirror the changes in prevalence. 

Climate Change and Demand for Heparin 

Figures 3.4a–3.4c present the results of the ESRD/heparin model. Aggregated across all age 
groups (Figure 3.4a), overall prevalence is estimated to increase relative to the baseline scenario. 
Aggregate deaths from ESRD and other causes are expected to rise under all climate change 
scenarios, driven by increased disease-specific and general mortality (Figure 3.4b). Overall, 
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these changes in prevalence and mortality result in an estimated increase in demand for heparin 
by 4.4 percent to 8.5 percent (Figure 3.4c). 

Figure 3.4a. Results of End-Stage Renal Disease/Heparin Model: Projected Percentage Change in 
ESRD Prevalence Compared to Baseline Under All Climate Change Scenarios and All Age Groups, 

2024–2040 

NOTE: Yellow and orange areas = range of projected prevalence estimates under selected climate scenarios; orange 
= more likely trajectory, yellow = less likely trajectory. Blue lines = randomly selected model runs. 
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Figure 3.4b. Results of End-Stage Renal Disease/Heparin Model: Projected Percentage Change in 
Total Deaths Compared to Baseline Under All Climate Change Scenarios, 2024–2040 

NOTE: Blue and violet areas = range of projected total deaths under selected climate scenarios; violet = more likely 
trajectory, blue = less likely trajectory. Blue lines = randomly selected model runs. 
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Figure 3.4c. Results of End-Stage Renal Disease/Heparin Model: Predicted Percentage Change in 
Demand for Heparin Across All Age Groups (2040) 

Under the baseline scenario, ESRD is expected to increase in prevalence across all age 
groups, particularly among individuals over the age of 45 years (Appendix D, Figure D.3). 
Climate change amplifies this trend, maintaining higher prevalence rates even in the face of 
increased mortality due to climate impacts. Unlike CVD, the incidence rate of ESRD has been 
rising, which contributes to sustained and exacerbated prevalence under climate change 
scenarios. Changes in estimated demand for heparin by age group would be expected to mirror 
the changes in prevalence. 

Climate Change and Demand for Donepezil 

Figures 3.5a–3.5c present the results of the Alzheimer’s/donepezil model. Aggregated across 
all age groups (Figure 3.5a), overall prevalence is expected to increase relative to the baseline 
scenario. Aggregate deaths from Alzheimer’s and other causes are expected to rise under all 
climate change scenarios, driven by increased disease-specific and general mortality (Figure 
3.5b). Due to the substantial increase in Alzheimer’s disease prevalence, the demand for 
donepezil is expected to rise significantly, especially under climate change scenarios (Figure 
3.5c). Overall demand for donepezil is projected to increase by 17.5 percent to 33.1 percent 
compared to baseline increases. 
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Figure 3.5a. Results for Alzheimer’s Disease/Donepezil Model: Projected Percentage Change in 
Alzheimer’s Disease Prevalence Compared to Baseline Under All Climate Change Scenarios and 

All Age Groups, 2024–2040 

NOTE: Yellow and orange areas = range of projected prevalence estimates under selected climate scenarios; orange 
= more likely trajectory, yellow = less likely trajectory. Blue lines = randomly selected model runs. 
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Figure 3.5b. Results for Alzheimer’s Disease/Donepezil Model: Projected Percentage Change in 
Total Deaths Compared to Baseline Under All Climate Change Scenarios, 2024–2040 

NOTE: Blue and violet areas = range of projected total deaths under selected climate scenarios; violet = more likely 
trajectory, blue = less likely trajectory. Blue lines = randomly selected model runs. 
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Figure 3.5c. Results for Alzheimer’s Disease/Donepezil Model: Predicted Percentage Change in 
Demand for Donepezil Across All Ages (2040) 

Our model for Alzheimer’s disease focused only on older age groups (55+ years). Prevalence 
and mortality are expected to increase among all age groups modeled (Appendix D, Figures D.4 
and D.8). 
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Chapter 4. Discussion and Future Directions 

Discussion 

From our environmental scan, we identified the following types of medical conditions that 
are climate-vulnerable: maternal-fetal health, CVD, asthma, COPD, water- and food-borne 
infectious diseases, fungal infections, vector-borne illnesses, mental health, cancer, stroke, 
Alzheimer’s disease and other neurodegenerative diseases, kidney disease, and diabetes. Many of 
these conditions are among the most common chronic conditions in the United States or among 
the top ten leading causes of death in the country. 

The majority of the articles from our environmental scan focused on the impact of climate 
change on maternal-fetal health, CVD, asthma, COPD, vector-borne diseases, and CKD. The 
environmental scan also revealed that drugs used to treat many of these conditions have 
experienced past and/or current shortages. Our review revealed a significant knowledge gap 
regarding the impact of climate change on the demand for drugs to treat these and other 
conditions. 

Many of the environmental scan articles included a discussion of the variability of climate 
change effects among different populations and geographic locations, highlighting the 
importance of keeping this variation in mind when considering climate-mitigating strategies so 
that resource planning is conducted with the highest-risk and highest-demand populations in 
mind. Furthermore, the shifting demographics of the U.S. population in the coming decades, 
particularly the aging population, will have a significant impact on how climate change interacts 
with health and drug demand in the future. 

We evaluated the demand for one drug used to treat each of the four medical conditions 
under study: CVD, asthma, ESRD, and Alzheimer’s disease. Our systems dynamics model 
estimates significant changes in drug demand across all age groups under various climate change 
scenarios. As climate change intensifies, the model projects that drug demand will generally 
increase, except in cases where higher mortality rates lead to a decrease in demand. The model 
captures the combined effects of these factors, particularly how increased incidence and 
mortality due to climate change affect disease prevalence—and hence drug demand. This 
selection process is indirect, involving a shift in the age profile or distribution of disease. There 
is a dynamic interplay within each age group between increased incidence and increased 
mortality, which ultimately determines not only the prevalence for the given age group but also 
for subsequent older age groups. 

The concept of selection effect is key to understanding how climate change influences 
disease prevalence outcomes—and ultimately drug demand. Selection effect refers to how 
changes in mortality rates under climate change reshape the composition of disease-affected 
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populations. For CVD, increased mortality due to climate change disproportionately affects those 
in advanced disease stages, stabilizing or reducing prevalence in older age groups (65+ years), 
despite rising incidence rates. Similarly, asthma shows exacerbated prevalence in younger age 
groups because of heightened incidence and exacerbation, while higher mortality rates among 
severe cases in older age groups might stabilize or reduce prevalence over time. 

In contrast, ESRD demonstrates sustained prevalence increases across all age groups under 
climate change, driven by a rising baseline incidence. Despite elevated mortality rates, the 
persistently high incidence of ESRD outweighs these effects, resulting in continued or 
exacerbated prevalence trends. This understanding of selection effects is crucial for anticipating 
future disease burdens and drug demand amid evolving environmental conditions. It emphasizes 
the need for health care and medical supply chain strategies that adapt, not only to disease 
incidence and mortality, but also to the dynamic shifts in disease prevalence driven by 
demographic changes and climate impacts. 

Future Directions 

The results of our systems dynamic model need to be interpreted in the context of the 
previously outlined model limitations (see Chapter 3). Future work should assess how these 
limitations may bias the estimates and explore ways to address these limitations in future 
iterations of the model. 

According to our literature review, existing models developed to predict the impact of 
climate change on future disease prevalence use various underlying assumptions, and evaluate 
impact on differing geographic units, time frames, or populations, which makes comparison of 
projected prevalence estimates across models (including comparison to our model) challenging. 
Our model is the first national-level model designed to predict drug demand changes under 
future climate scenarios. Building on our work, future research can develop a blueprint for 
climate change and health model inputs to create methodological consistency across studies and 
allow for cross-model comparisons. 

Future versions of this model, which informs demand for drugs or medical products in 
response to health outcomes of climate, can focus on U.S. regions and populations at highest risk 
for climate-related weather events. Furthermore, future models can account for chronic disease 
progression or severity (and resultant impact on drug demand) and account for complex climate 
events where multiple extreme weather events need to be concurrently accounted for. The 
current model focuses on chronic conditions and assumes that people with these conditions will 
remain on the modeled drugs. Future work should examine acute conditions affected by climate 
change, such as Valley Fever and other infectious diseases, and short-term demand for related 
drugs. Importantly, future models should evaluate drug supply-demand dynamics and account 
for various drugs that can be interchangeably used to treat a given condition. As far as the effect 
of extreme temperature on health is concerned, most studies focused on extreme heat. Future 
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studies should also focus on better understanding the effect of extreme cold weather on health 
and related drug demand. 

With the model’s estimations, policymakers, manufacturers, suppliers, health care providers, 
and other key stakeholders may be able to have a clearer view of the potential anticipated future 
drug demand—and necessary innovations or strategies required to mitigate increased demand— 
under varying climate conditions. This could help trigger proactive strategies to build supply 
chain resiliency through advance planning—such as stockpiling, ensuring the availability of 
multiple supply chains for certain high-demand drugs, and on-shoring production, where 
appropriate. Ultimately, the model could be used to inform policies to mitigate climate change’s 
impact on demand by ensuring sufficient drug supply under various future climate scenarios. 
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Appendix A. Environmental Scan Search Strategy 

Table A.1. Search Strategy of PubMed Database 

Set 
No. Search 

No. of 
results 

1 “United States”[tiab] OR “U.S.”[tiab] OR “US”[tiab] OR “USA”[tiab] OR “U.S.A.”[tiab] OR 
Alabama[tiab] OR Alaska[tiab] OR Arizona[tiab] OR Arkansas[tiab] OR California[tiab] OR 
Colorado[tiab] OR Connecticut[tiab] OR Delaware[tiab] OR “District of Columbia”[tiab] OR 
Florida[tiab] OR Georgia[tiab] OR Hawaii[tiab] OR “Hawai i”[tiab] OR Idaho[tiab] OR 
Illinois[tiab] OR Indiana[tiab] OR Iowa[tiab] OR Kansas[tiab] OR Kentucky[tiab] OR 
Louisiana[tiab] OR Maine[tiab] OR Maryland[tiab] OR Massachusetts[tiab] OR Michigan[tiab] 
OR Minnesota[tiab] OR Mississippi[tiab] OR Missouri[tiab] OR Montana[tiab] OR 
Nebraska[tiab] OR Nevada[tiab] OR “New Hampshire”[tiab] OR “New Jersey”[tiab] OR “New 
Mexico”[tiab] OR “New York”[tiab] OR “North Carolina”[tiab] OR “North Dakota”[tiab] OR 
Ohio[tiab] OR Oklahoma[tiab] OR Oregon[tiab] OR Pennsylvania[tiab] OR “Rhode Island”[tiab] 
OR “South Carolina”[tiab] OR “South Dakota”[tiab] OR Tennessee[tiab] OR Texas[tiab] OR 
Utah[tiab] OR Vermont[tiab] OR Virginia[tiab] OR Washington[tiab] OR “West Virginia”[tiab] 
OR Wisconsin[tiab] OR Wyoming[tiab] OR Huntsville[tiab] OR Montgomery[tiab] OR 
Anchorage[tiab] OR Fairbanks[tiab] OR Tafuna[tiab] OR Phoenix[tiab] OR Tucson[tiab] OR 
“Little Rock”[tiab] OR Fayetteville[tiab] OR “Los Angeles”[tiab] OR “San Diego”[tiab] OR 
Denver[tiab] OR “Colorado Springs”[tiab] OR Bridgeport[tiab] OR Stamford[tiab] OR 
Wilmington[tiab] OR Jacksonville[tiab] OR Miami[tiab] OR Atlanta[tiab] OR Columbus[tiab] OR 
Honolulu[tiab] OR Boise[tiab] OR Chicago[tiab] OR Aurora[tiab] OR Indianapolis[tiab] OR 
“Fort Wayne”[tiab] OR “Des Moines”[tiab] OR “Cedar Rapids”[tiab] OR Wichita[tiab] OR 
“Overland Park”[tiab] OR Louisville[tiab] OR Lexington[tiab] OR “New Orleans”[tiab] OR 
“Baton Rouge”[tiab] OR Baltimore[tiab] OR Boston[tiab] OR Worcester[tiab] OR Detroit[tiab] 
OR “Grand Rapids”[tiab] OR Minneapolis[tiab] OR “Kansas City”[tiab] OR Billings[tiab] OR 
Missoula[tiab] OR Omaha[tiab] OR Lincoln[tiab] OR “Las Vegas”[tiab] OR Nashua[tiab] OR 
Newark[tiab] OR “Jersey City”[tiab] OR Albuquerque[tiab] OR “Las Cruces”[tiab] OR 
Charlotte[tiab] OR Raleigh[tiab] OR Fargo[tiab] OR Bismarck[tiab] OR Dandan[tiab] OR 
Cleveland[tiab] OR Tulsa[tiab] OR Portland[tiab] OR Salem[tiab] OR Philadelphia[tiab] OR 
Pittsburgh[tiab] OR “San Juan”[tiab] OR Bayamon[tiab] OR Providence[tiab] OR Warwick[tiab] 
OR Charleston[tiab] OR “Sioux Falls”[tiab] OR “Rapid City”[tiab] OR Nashville[tiab] OR 
Memphis[tiab] OR Houston[tiab] OR “San Antonio”[tiab] OR “Salt Lake City”[tiab] OR “West 
Valley City”[tiab] OR Burlington[tiab] OR Chesapeake[tiab] OR Seattle[tiab] OR Spokane[tiab] 
OR Huntington[tiab] OR Milwaukee[tiab] OR Madison[tiab] OR Cheyenne[tiab] OR 
Casper[tiab] OR “United States”[Mesh] OR “Puerto Rico”[Mesh] OR Guam[Mesh] OR “Los 
Angeles”[Mesh] OR “San Francisco”[Mesh] OR “Chicago”[Mesh] OR “New York City”[Mesh] 
OR “Baltimore”[Mesh] OR “Philadelphia”[Mesh] OR “Boston”[Mesh] OR “New Orleans”[Mesh] 

2,155,158 

2 (asthma*[tiab] OR “Asthma”[Mesh]) 208,271 
3 (albuterol*[tiab] OR “albuterol sulfate”[tiab] OR “albuterol ipratropium”[tiab:~1] OR 

Levalbuterol[tiab] OR Proventil[tiab] OR Salbutamol[tiab] OR Sultanol[tiab] OR “Salmeterol 
Xinafoate”[tiab] OR Ventolin[tiab] OR “Fluticasone Salmeterol”[tiab] OR “Formoterol 
Fumarate”[tiab] OR “Albuterol”[Mesh]) 

14,969 

4 #1 AND #2 AND #3 AND (2013/12/31:2024/12/31[pdat]) AND (english[Filter]) 118 
5 “heart failure*”[tiab] OR “heart attack*”[tiab] OR “myocardial failure*”[tiab] OR “myocardial 

infarction*”[tiab] OR “myocardial ischemia”[tiab] OR “Heart Failure”[Mesh] OR “Myocardial 
Infarction”[Mesh] OR “Myocardial Ischemia”[Mesh] OR “Cardiomyopathies”[MAJR] OR 
stroke[tiab] OR strokes[tiab] OR “cerebrovascular disease*”[tiab] OR “cerebrovascular 
disorder*”[tiab] OR “cerebrovascular accident*”[tiab] OR “Stroke”[Mesh] OR “Cerebrovascular 
Disorders”[Mesh] 

1,381,791 

6 Metoprolol[tiab] OR Toprol*[tiab] OR Lopressor*[tiab] OR “Metoprolol”[Mesh] 9,127 
7 #1 AND #5 AND #6 AND (2013/12/31:2024/12/31[pdat]) AND (english[Filter]) 47 
8 Coccidioidomycosis[tiab] OR Coccidiomycosis[tiab] OR “Coccidioides infection”[tiab:~1] OR 

“Coccidioides infections”[tiab:~1] OR Coccidioidal[tiab] OR “San Joaquin Valley Fever”[tiab] 
OR “Coccidioidomycosis”[Mesh] 

4,014 
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Set 
No. Search 

No. of 
results 

9 Amphotericin[tiab] OR Amphocil[tiab] OR “Amphotericin B”[Mesh] 27,692 
10 #1 AND #8 AND #9 AND (2013/12/31:2024/12/31[pdat]) AND (english[Filter]) 23 
11 (“chronic kidney disease*”[tiab] OR “chronic kidney insufficienc*”[tiab] OR “chronic renal 

insufficienc*”[tiab] OR “chronic renal failure*”[tiab] OR “chronic kidney failure*”[tiab] OR 
“chronic kidney disorder*”[tiab] OR “chronic kidney injur*”[tiab] OR “chronic renal injur*”[tiab] 
OR “end stage kidney disease*”[tiab] OR “end stage renal disease*”[tiab] OR dialysis[tiab] OR 
hemodialys*[tiab] OR “hemodiafiltration”[tiab] OR “renal dialysis”[tiab] OR “Renal Insufficiency, 
Chronic”[Mesh] OR “Kidney Failure, Chronic”[Mesh] OR “Renal Dialysis”[Mesh]) 

328,277 

12 (heparin*[tiab] OR LMWH*[tiab] OR Dalteparin[tiab] OR Enoxaparin[tiab] OR Nadroparin[tiab] 
OR Tinzaparin[tiab] OR Heparin[Mesh]) 

117,002 

13 #1 AND #11 AND #12 AND (2013/12/31:2024/12/31[pdat]) AND (english[Filter]) 47 
14 (Alzheimer*[tiab] OR “Alzheimer Disease”[Mesh]) 215,257 
15 (Donepezil[tiab] OR “Donepezil”[Mesh] OR Aricept[tiab] OR Galantamin*[tiab] OR Nivalin[tiab] 

OR Reminyl[tiab] OR “Galantamine”[Mesh] OR Rivastigmine[tiab] OR Exelon[tiab] OR 
Rivastigmine[Mesh]) 

8,265 

16 #1 AND #14 AND #15 AND (2013/12/31:2024/12/31[pdat]) AND (english[Filter]) 79 

Table A.2. Search Strategy of CINAHL Database 

Set 
No. Search 

No. of 
Results 

1 (TI “United States” OR AB “United States”) OR (TI U.S. OR AB U.S.) OR (TI USA OR AB 
USA) OR (TI U.S.A. OR AB U.S.A.) OR (TI Alabama OR AB Alabama) OR (TI Alaska OR AB 
Alaska) OR (TI Arizona OR AB Arizona) OR (TI Arkansas OR AB Arkansas) OR (TI California 
OR AB California) OR (TI Colorado OR AB Colorado) OR (TI Connecticut OR AB Connecticut) 
OR (TI Delaware OR AB Delaware) OR (TI “District of Columbia” OR AB “District of 
Columbia”) OR (TI Florida OR AB Florida) OR (TI Georgia OR AB Georgia) OR (TI Hawaii OR 
AB Hawaii) OR (TI “Hawai i” OR AB “Hawai i”) OR (TI Idaho OR AB Idaho) OR (TI Illinois OR 
AB Illinois) OR (TI Indiana OR AB Indiana) OR (TI Iowa OR AB Iowa) OR (TI Kansas OR AB 
Kansas) OR (TI Kentucky OR AB Kentucky) OR (TI Louisiana OR AB Louisiana) OR (TI 
Maine OR AB Maine) OR (TI Maryland OR AB Maryland) OR (TI Massachusetts OR AB 
Massachusetts) OR (TI Michigan OR AB Michigan) OR (TI Minnesota OR AB Minnesota) OR 
(TI Mississippi OR AB Mississippi) OR (TI Missouri OR AB Missouri) OR (TI Montana OR AB 
Montana) OR (TI Nebraska OR AB Nebraska) OR (TI Nevada OR AB Nevada) OR (TI “New 
Hampshire” OR AB “New Hampshire”) OR (TI “New Jersey” OR AB “New Jersey”) OR (TI 
“New Mexico” OR AB “New Mexico”) OR (TI “New York” OR AB “New York”) OR (TI “North 
Carolina” OR AB “North Carolina”) OR (TI “North Dakota” OR AB “North Dakota”) OR (TI Ohio 
OR AB Ohio) OR (TI Oklahoma OR AB Oklahoma) OR (TI Oregon OR AB Oregon) OR (TI 
Pennsylvania OR AB Pennsylvania) OR (TI “Rhode Island” OR AB “Rhode Island”) OR (TI 
“South Carolina” OR AB “South Carolina”) OR (TI “South Dakota” OR AB “South Dakota”) OR 
(TI Tennessee OR AB Tennessee) OR (TI Texas OR AB Texas) OR (TI Utah OR AB Utah) 
OR (TI Vermont OR AB Vermont) OR (TI Virginia OR AB Virginia) OR (TI Washington OR AB 
Washington) OR (TI “West Virginia” OR AB “West Virginia”) OR (TI Wisconsin OR AB 
Wisconsin) OR (TI Wyoming OR AB Wyoming) OR (TI Huntsville OR AB Huntsville) OR (TI 
Montgomery OR AB Montgomery) OR (TI Anchorage OR AB Anchorage) OR (TI Fairbanks 
OR AB Fairbanks) OR (TI Tafuna OR AB Tafuna) OR (TI Phoenix OR AB Phoenix) OR (TI 
Tucson OR AB Tucson) OR (TI “Little Rock” OR AB “Little Rock”) OR (TI Fayetteville OR AB 
Fayetteville) OR (TI “Los Angeles” OR AB “Los Angeles”) OR (TI “San Diego” OR AB “San 
Diego”) OR (TI Denver OR AB Denver) OR (TI “Colorado Springs” OR AB “Colorado Springs”) 
OR (TI Bridgeport OR AB Bridgeport) OR (TI Stamford OR AB Stamford) OR (TI Wilmington 
OR AB Wilmington) OR (TI Jacksonville OR AB Jacksonville) OR (TI Miami OR AB Miami) OR 
(TI Atlanta OR AB Atlanta) OR (TI Columbus OR AB Columbus) OR (TI Honolulu OR AB 
Honolulu) OR (TI Boise OR AB Boise) OR (TI Chicago OR AB Chicago) OR (TI Aurora OR AB 
Aurora) OR (TI Indianapolis OR AB Indianapolis) OR (TI “Fort Wayne” OR AB “Fort Wayne”) 
OR (TI “Des Moines” OR AB “Des Moines”) OR (TI “Cedar Rapids” OR AB “Cedar Rapids”) 
OR (TI Wichita OR AB Wichita) OR (TI “Overland Park” OR AB “Overland Park”) OR (TI 
Louisville OR AB Louisville) OR (TI Lexington OR AB Lexington) OR (TI “New Orleans” OR 
AB “New Orleans”) OR (TI “Baton Rouge” OR AB “Baton Rouge”) OR (TI Baltimore OR AB 

972,684 
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Set 
No. Search 

No. of 
Results 

Baltimore) OR (TI Boston OR AB Boston) OR (TI Worcester OR AB Worcester) OR (TI Detroit 
OR AB Detroit) OR (TI “Grand Rapids” OR AB “Grand Rapids”) OR (TI Minneapolis OR AB 
Minneapolis) OR (TI “Kansas City” OR AB “Kansas City”) OR (TI Billings OR AB Billings) OR 
(TI Missoula OR AB Missoula) OR (TI Omaha OR AB Omaha) OR (TI Lincoln OR AB Lincoln) 
OR (TI “Las Vegas” OR AB “Las Vegas”) OR (TI Nashua OR AB Nashua) OR (TI Newark OR 
AB Newark) OR (TI “Jersey City” OR AB “Jersey City”) OR (TI Albuquerque OR AB 
Albuquerque) OR (TI “Las Cruces” OR AB “Las Cruces”) OR (TI Charlotte OR AB Charlotte) 
OR (TI Raleigh OR AB Raleigh) OR (TI Fargo OR AB Fargo) OR (TI Bismarck OR AB 
Bismarck) OR (TI Dandan OR AB Dandan) OR (TI Cleveland OR AB Cleveland) OR (TI Tulsa 
OR AB Tulsa) OR (TI Portland OR AB Portland) OR (TI Salem OR AB Salem) OR (TI 
Philadelphia OR AB Philadelphia) OR (TI Pittsburgh OR AB Pittsburgh) OR (TI “San Juan” OR 
AB “San Juan”) OR (TI Bayamon OR AB Bayamon) OR (TI Providence OR AB Providence) 
OR (TI Warwick OR AB Warwick) OR (TI Charleston OR AB Charleston) OR (TI “Sioux Falls” 
OR AB “Sioux Falls”) OR (TI “Rapid City” OR AB “Rapid City”) OR (TI Nashville OR AB 
Nashville) OR (TI Memphis OR AB Memphis) OR (TI Houston OR AB Houston) OR (TI “San 
Antonio” OR AB “San Antonio”) OR (TI “Salt Lake City” OR AB “Salt Lake City”) OR (TI “West 
Valley City” OR AB “West Valley City”) OR (TI Burlington OR AB Burlington) OR (TI 
Chesapeake OR AB Chesapeake) OR (TI Seattle OR AB Seattle) OR (TI Spokane OR AB 
Spokane) OR (TI Milwaukee OR AB Milwaukee) OR (TI Madison OR AB Madison) OR (TI 
Cheyenne OR AB Cheyenne) OR (TI Casper OR AB Casper) OR (MH “United States+”) OR 
(MH “Puerto Rico”) OR (MH “Guam”) 

2 (TI asthma* OR AB asthma*) OR (MH “Asthma+”) 50,490 
3 (TI albuterol* OR AB albuterol*) OR (TI “albuterol sulfate” OR AB “albuterol sulfate”) OR (TI 

“albuterol ipratropium” OR AB “albuterol ipratropium”) OR (TI Levalbuterol OR AB 
Levalbuterol) OR (TI Proventil OR AB Proventil) OR (TI Salbutamol OR AB Salbutamol) OR 
(TI Sultanol OR AB Sultanol) OR (TI “Salmeterol Xinafoate” OR AB “Salmeterol Xinafoate”) 
OR (TI Ventolin OR AB Ventolin) OR (TI “Fluticasone Salmeterol” OR AB “Fluticasone 
Salmeterol”) OR (TI “Formoterol Fumarate” OR AB “Formoterol Fumarate”) OR (MH 
“Albuterol”) 

3,086 

4 S1 AND S2 AND S3 Limits: 2013 – 2024; English; Academic Journals 58 
5 (TI “heart failure*” OR AB “heart failure*”) OR (TI “heart attack*” OR AB “heart attack*”) OR (TI 

“myocardial failure*” OR AB “myocardial failure*”) OR (TI “myocardial infarction*” OR AB 
“myocardial infarction*”) OR (TI “myocardial ischemia” OR AB “myocardial ischemia”) OR (MH 
“Heart Failure+”) OR (MH “Myocardial Infarction+”) OR (MH “Myocardial Ischemia+”) OR (MM 
Cardiomyopathies+) OR (TI stroke OR AB stroke) OR (TI strokes OR AB strokes) OR (TI 
“cerebrovascular disease*” OR AB “cerebrovascular disease*”) OR (TI “cerebrovascular 
disorder*” OR AB “cerebrovascular disorder*”) OR (TI “cerebrovascular accident*” OR AB 
“cerebrovascular accident*”) OR 
(MH “Stroke+”)OR (MH “Cerebrovascular Disorders”) 

325,693 

6 (TI Metoprolol OR AB Metoprolol) OR (TI Toprol* OR AB Toprol*) OR (TI Lopressor* OR AB 
Lopressor*) OR (MH “Metoprolol”) 

1,457 

7 S1 AND S5 AND S6 Limits: 2013 – 2024; English; Academic Journals 25 
8 (TI Coccidioidomycosis OR AB Coccidioidomycosis) OR (TI Coccidiomycosis OR AB 

Coccidiomycosis) OR (TI “Coccidioides infection*” OR AB “Coccidioides infection*”) OR (TI 
Coccidioidal OR AB Coccidioidal) OR (TI “San Joaquin Valley Fever” OR AB “San Joaquin 
Valley Fever”) OR (MH “Coccidioidomycosis”) 

601 

9 (TI Amphotericin OR AB Amphotericin) OR (TI Amphocil OR AB Amphocil) OR (MH 
“Amphotericin B”) 

2,759 

10 S1 AND S8 AND S9 Limits: 2013 – 2024; English; Academic Journals 4 
11 (TI “chronic kidney disease*” OR AB “chronic kidney disease*”) OR (TI “chronic kidney 

insufficienc*” OR AB “chronic kidney insufficienc*”) OR (TI “chronic renal insufficienc*” OR AB 
“chronic renal insufficienc*”) OR (TI “chronic renal failure*” OR AB “chronic renal failure*”) OR 
(TI “chronic kidney failure*” OR AB “chronic kidney failure*”) OR (TI “chronic kidney disorder*” 
OR AB “chronic kidney disorder*”) OR (TI “chronic kidney injur*” OR AB “chronic kidney 
injur*”) OR (TI “chronic renal injur*” OR AB “chronic renal injur*”) OR (TI “end stage kidney 
disease*” OR AB “end stage kidney disease*”) OR (TI “end stage renal disease*” OR AB “end 
stage renal disease*”) OR (TI dialysis OR AB dialysis) OR (TI hemodialys* OR AB 
hemodialys*) OR (TI hemodiafiltration OR AB hemodiafiltration) OR (TI “renal dialysis” OR AB 

70,277 
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Set 
No. Search 

No. of 
Results 

“renal dialysis”) OR (MH “Renal Insufficiency, Chronic+”) OR (MH “Kidney Failure, Chronic”) 
OR (MH “Dialysis”) OR (MH “Dialysis Patients”) 

12 (TI heparin* OR AB heparin*) OR (TI LMWH* OR AB LMWH*) OR (TI Dalteparin OR AB 
Dalteparin) OR (TI Enoxaparin OR AB Enoxaparin) OR (TI Nadroparin OR AB Nadroparin) OR 
(TI Tinzaparin OR AB Tinzaparin) OR (MH “Heparin+”) OR (MH “Heparin, Low-Molecular-
Weight”) OR (MH “Dalteparin Sodium”) OR (MH “Tinzaparin Sodium”) 

16,005 

13 S1 AND S11 AND S12Limits: 2013 – 2024; English; Academic Journals 14 
14 (TI Alzheimer* OR AB Alzheimer*) OR (MH “Alzheimer’s Disease”) 53,037 
15 ((TI Donepezil OR AB Donepezil) OR (TI Aricept OR AB Aricept) OR (TI Galantamin* OR AB 

Galantamin*) OR (TI Nivalin OR AB Nivalin) OR (TI Reminyl OR AB Reminyl) OR (TI 
Rivastigmine OR AB Rivastigmine) OR (TI Exelon OR AB Exelon) OR 
(MH “Donepezil”) OR (MH “Galanthamine”) OR (MH “Rivastigmine”) 

2,388 

16 S1 AND S14 AND S15 Limits: 2013 – 2024; English; Academic Journals 26 

Table A.3. Search Strategy of Web of Science Database 

Set 
No. Search 

No. of 
results 

1 TI=(“United States” OR “U.S.” OR “USA” OR “US” OR “U.S.A.” OR Alabama OR Alaska OR 
Arizona OR Arkansas OR California OR Colorado OR Connecticut OR Delaware OR 
“District of Columbia” OR Florida OR Georgia OR Hawaii OR “Hawai i” OR Idaho OR Illinois 
OR Indiana OR Iowa OR Kansas OR Kentucky OR Louisiana OR Maine OR Maryland OR 
Massachusetts OR Michigan OR Minnesota OR Mississippi OR Missouri OR Montana OR 
Nebraska OR Nevada OR “New Hampshire” OR “New Jersey” OR “New Mexico” OR “New 
York” OR “North Carolina” OR “North Dakota” OR Ohio OR Oklahoma OR Oregon OR 
Pennsylvania OR “Rhode Island” OR “South Carolina” OR “South Dakota” OR Tennessee 
OR Texas OR Utah OR Vermont OR Virginia OR Washington OR “West Virginia” OR 
Wisconsin OR Wyoming OR Huntsville OR Montgomery OR Anchorage OR Fairbanks OR 
Phoenix OR Tucson OR “Little Rock” OR Fayetteville OR “Los Angeles” OR “San Diego” 
OR Denver OR “Colorado Springs” OR Bridgeport OR Stamford OR Wilmington OR 
Jacksonville OR Miami OR Atlanta OR Honolulu OR Boise OR Chicago OR Indianapolis 
OR “Fort Wayne” OR “Des Moines” OR “Cedar Rapids” OR Wichita OR “Overland Park” 
OR Louisville OR “New Orleans” OR “Baton Rouge” OR Baltimore OR Boston OR Detroit 
OR “Grand Rapids” OR Minneapolis OR “Kansas City” OR Billings OR Missoula OR 
Omaha OR “Las Vegas” OR Nashua OR “Jersey City” OR Albuquerque OR “Las Cruces” 
OR Raleigh OR Fargo OR Cleveland OR Tulsa OR Portland OR Salem OR Philadelphia 
OR Pittsburgh OR “San Juan” OR Charleston OR “Sioux Falls” OR “Rapid City” OR 
Nashville OR Memphis OR Houston OR “San Antonio” OR “Salt Lake City” OR “West 
Valley City” OR Burlington OR Seattle OR Spokane OR Milwaukee) OR AB=(“United 
States” OR “U.S.” OR “USA” OR “U.S.A.” OR Alabama OR Alaska OR Arizona OR 
Arkansas OR California OR Colorado OR Connecticut OR Delaware OR “District of 
Columbia” OR Florida OR Georgia OR Hawaii OR “Hawai i” OR Idaho OR Illinois OR 
Indiana OR Iowa OR Kansas OR Kentucky OR Louisiana OR Maine OR Maryland OR 
Massachusetts OR Michigan OR Minnesota OR Mississippi OR Missouri OR Montana OR 
Nebraska OR Nevada OR “New Hampshire” OR “New Jersey” OR “New Mexico” OR “New 
York” OR “North Carolina” OR “North Dakota” OR Ohio OR Oklahoma OR Oregon OR 
Pennsylvania OR “Rhode Island” OR “South Carolina” OR “South Dakota” OR Tennessee 
OR Texas OR Utah OR Vermont OR Virginia OR Washington OR “West Virginia” OR 
Wisconsin OR Wyoming OR Huntsville OR Montgomery OR Anchorage OR Fairbanks OR 
Phoenix OR Tucson OR “Little Rock” OR Fayetteville OR “Los Angeles” OR “San Diego” 
OR Denver OR “Colorado Springs” OR Bridgeport OR Stamford OR Wilmington OR 
Jacksonville OR Miami OR Atlanta OR Honolulu OR Boise OR Chicago OR Indianapolis 
OR “Fort Wayne” OR “Des Moines” OR “Cedar Rapids” OR Wichita OR “Overland Park” 
OR Louisville OR “New Orleans” OR “Baton Rouge” OR Baltimore OR Boston OR Detroit 
OR “Grand Rapids” OR Minneapolis OR “Kansas City” OR Billings OR Missoula OR 
Omaha OR “Las Vegas” OR Nashua OR “Jersey City” OR Albuquerque OR “Las Cruces” 

1,878,497 
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Set 
No. Search 

No. of 
results 

OR Raleigh OR Fargo OR Cleveland OR Tulsa OR Portland OR Salem OR Philadelphia 
OR Pittsburgh OR “San Juan” OR Charleston OR “Sioux Falls” OR “Rapid City” OR 
Nashville OR Memphis OR Houston OR “San Antonio” OR “Salt Lake City” OR “West 
Valley City” OR Burlington OR Seattle OR Spokane OR Milwaukee) 

2 TI=(asthma*) OR AB=(asthma*) 190,596 
3 TI=(albuterol* OR “albuterol sulfate” OR “albuterol ipratropium” OR Levalbuterol OR 

Proventil OR Salbutamol OR Sultanol OR “Salmeterol Xinafoate” OR Ventolin OR 
“Fluticasone Salmeterol” OR “Formoterol Fumarate”) OR AB=(albuterol* OR “albuterol 
sulfate” OR “albuterol ipratropium” OR Levalbuterol OR Proventil OR Salbutamol OR 
Sultanol OR “Salmeterol Xinafoate” OR Ventolin OR “Fluticasone Salmeterol” OR 
“Formoterol Fumarate”) 

11,641 

4 (#1 AND #2 AND #3) AND (PY==(“2024” OR “2023” OR “2022” OR “2021” OR “2020” OR 
“2019” OR “2018” OR “2017” OR “2016” OR “2015” OR “2014” OR “2013”) AND 
DT==(“ARTICLE” OR “REVIEW” OR “EARLY ACCESS”) AND LA==(“ENGLISH”)) 

57 

5 TI=(“heart failure*” OR “heart attack*” OR “myocardial failure*” OR “myocardial infarction*” 
OR “myocardial ischemia” OR cardiomyopath* OR stroke OR strokes OR “cerebrovascular 
disease*” OR “cerebrovascular disorder*” OR “cerebrovascular accident*”) OR AB=(“heart 
failure*” OR “heart attack*” OR “myocardial failure*” OR “myocardial infarction*” OR 
“myocardial ischemia” OR cardiomyopath* OR stroke OR strokes OR “cerebrovascular 
disease*” OR “cerebrovascular disorder*” OR “cerebrovascular accident*”) 

876,631 

6 TI=(Metoprolol OR Toprol* OR Lopressor*) OR AB=(Metoprolol OR Toprol* OR Lopressor*) 8,204 
7 (#1 AND #5 AND #6) AND (PY==(“2024” OR “2023” OR “2022” OR “2021” OR “2020” OR 

“2019” OR “2018” OR “2017” OR “2016” OR “2015” OR “2014” OR “2013”) AND 
DT==(“ARTICLE” OR “REVIEW” OR “EARLY ACCESS”) AND LA==(“ENGLISH”)) 

19 

8 TI=(Coccidioidomycosis OR Coccidiomycosis OR “Coccidioides infection*” OR Coccidioidal 
OR “San Joaquin Valley Fever”) OR AB=(Coccidioidomycosis OR Coccidiomycosis OR 
“Coccidioides infection*” OR Coccidioidal OR “San Joaquin Valley Fever”) 

2,355 

9 TI=(Amphotericin* OR Amphocil) OR AB=(Amphotericin* OR Amphocil) 20,068 
10 (#1 AND #8 AND #9) AND (PY==(“2024” OR “2023” OR “2022” OR “2021” OR “2020” OR 

“2019” OR “2018” OR “2017” OR “2016” OR “2015” OR “2014” OR “2013”) AND 
DT==(“ARTICLE” OR “REVIEW” OR “EARLY ACCESS”) AND LA==(“ENGLISH”)) 

16 

11 TI=(“chronic kidney disease*” OR “chronic kidney insufficienc*” OR “chronic renal 
insufficienc*” OR “chronic renal failure*” OR “chronic kidney failure*” OR “chronic kidney 
disorder*” OR “chronic kidney injur*” OR “chronic renal injur*” OR “end stage kidney 
disease*” OR “end stage renal disease*” OR dialysis OR hemodialys* OR 
“hemodiafiltration” OR “renal dialysis”) OR AB=(“chronic kidney disease*” OR “chronic 
kidney insufficienc*” OR “chronic renal insufficienc*” OR “chronic renal failure*” OR “chronic 
kidney failure*” OR “chronic kidney disorder*” OR “chronic kidney injur*” OR “chronic renal 
injur*” OR “end stage kidney disease*” OR “end stage renal disease*” OR dialysis OR 
hemodialys* OR “hemodiafiltration” OR “renal dialysis”) 

271,362 

12 TI=(heparin* OR LMWH* OR Dalteparin OR Enoxaparin OR Nadroparin OR Tinzaparin) OR 
AB=(heparin* OR LMWH* OR Dalteparin OR Enoxaparin OR Nadroparin OR Tinzaparin) 

91,914 

13 (#1 AND #11 AND #12) AND (PY==(“2024” OR “2023” OR “2022” OR “2021” OR “2020” 
OR “2019” OR “2018” OR “2017” OR “2016” OR “2015” OR “2014” OR “2013”) AND 
DT==(“ARTICLE” OR “REVIEW” OR “EARLY ACCESS”) AND LA==(“ENGLISH”)) 

35 

14 TI=(Alzheimer*) OR AB=(Alzheimer*) 211,663 
15 TI=(Donepezil OR Aricept OR Galantamin* OR Nivalin OR Reminyl OR Rivastigmine OR 

Exelon) OR AB=(Donepezil OR Aricept OR Galantamin* OR Nivalin OR Reminyl OR 
Rivastigmine OR Exelon) 

8,701 

16 (#1 AND #14 AND #15) AND (PY==(“2024” OR “2023” OR “2022” OR “2021” OR “2020” 
OR “2019” OR “2018” OR “2017” OR “2016” OR “2015” OR “2014” OR “2013”) AND 
DT==(“ARTICLE” OR “REVIEW” OR “EARLY ACCESS”) AND LA==(“ENGLISH”)) 

62 

NOTE: Web of Science Core Collection: Science Citation Index Expanded (SCI-EXPANDED), Social Sciences 
Citation Index (SSCI), Emerging Sources Citation Index (ESCI). 
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Table A.4. Search Strategy of Grey Literature 

Search Parameter Details 
Any of these words “drug utilization” | “drug usage” | “prescription statistic*” | “prescribed 

drug statistic*” | “total purchase*” | “drug shortage*” | “drug prescriptions 
statistical data” 

This exact word or phrase ((Albuterol* OR “albuterol sulfate” OR “albuterol ipratropium” OR 
Levalbuterol OR Proventil OR Salbutamol OR Sultanol OR “Salmeterol 
Xinafoate” OR Ventolin OR “Fluticasone Salmeterol” OR “Formoterol 
Fumarate”) AND asthma) 
Metoprolol OR Toprol* OR Lopressor* OR “Metoprolol” 
(Amphotericin OR Amphocil OR “Amphotericin B”) AND (“San Joaquin 
Valley Fever”[tiab] OR Coccidioidomycosis) 
((Heparin* OR Enoxaparin OR Nadroparin OR Tinzaparin) AND 
(“kidney disease” OR hemodialysis)) 
((Donepezil OR Aricept OR Galantamine OR Nivalin OR Reminyl OR 
Rivastigmine OR Exelon) AND Alzheimer) 

Limited to these site domains 
(.gov, .org) 

AAP, AHRQ, AMA, CDC, FDA, HHSEPA, IOM/NAM, IQVIA, National 
Academies, NSF, WHO 

Year limits 2014–2024 
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Appendix B. Technical Model Details 

This appendix provides additional technical details on the structure of the model to 
supplement the methods as written in Chapter 3. Specific details on data sources, inputs, and 
transformations are available in Appendix C. 

Model Design 

Given the age-structured nature of our model, we maintain separate compartments, also 
known as state variables, for each clinical state within each age group. Specifically, we denote 𝑇
as the population diagnosed with a given disease, for example, CVD, and receiving treatment in 
age group 𝑖. 𝐻 represents the healthy population in age group 𝑖, and 𝐷 denotes the deceased 
population in age group 𝑖. These compartments, 𝑇, 𝐻 , and 𝐷 , represent the different conditions 
individuals can be in over time. The state variables are updated as time (denoted by 𝑡) progresses 
in the model simulation. 

The dynamics of our model are governed by a set of coupled ODEs. These equations 
determine how individuals move between different compartments over time. They also account 
for demographic changes, such as births and migration. In our model, the rate at which 
individuals enter the healthy population via birth or migration for age group 𝑖 is denoted by 𝜋. 
The rate at which individuals age from one group to the next (for example, from age group 𝑖 to 
age group 𝑖 + 1) is denoted by 𝛼. 

For simplicity, we assume that no individuals are born with a given disease and that 
immigrants do not enter the system already diagnosed with a disease. Our model explicitly 
accounts for aging within both the healthy and diagnosed populations as part of the demographic 
dynamics. 

New cases of a disease (incidence) are represented by the movement of individuals from the 
Healthy Population to the Diagnosed and Treated Population. This transition is governed by age-
specific hazard rates, denoted by 𝜆, which represents the annual risk of a healthy individual 
developing and being diagnosed with a disease. Deaths within each age group 𝑖 are accounted for 
by two rates: the all-other-cause mortality rate (𝜇) and the disease-specific mortality rate (𝜇), 
both of which can change over time (𝑡). For our baseline scenario, these rates are based on 
existing U.S. Census Bureau projections (U.S. Census Bureau, undated). For our climate change 
scenarios, these rates are adjusted to reflect the impact of extreme weather events related to 
climate change. 

Although our model uses annual rates for input parameters, we convert these to daily rates 
(i.e., divide by 365) since our model operates on a daily time scale. This conversion allows us to 



41 

capture the dynamics of disease progression and treatment more accurately on a finer, day-to-day 
basis. 

Based on the described state variables and transition rates, our model is formulated by the 
following set of coupled ODEs (1) through (3): 

 
 
= 𝜋 − (𝜆 + 𝜇)𝐻 + (𝛼𝐻 − 𝛼𝐻) (1) 


 
= 𝜆𝐻 − (𝜇 + 𝜇)𝑇 + (𝛼𝑇 − 𝛼𝑇) (2) 


 
= 𝜇(𝐻 + 𝑇) + 𝜇𝑇 (3). 

These interconnected ODEs are numerically integrated in R version 4.2.2 using the deSolve 
package (Soetaert, Petzoldt, and Setzer, 2010). 

Informing the Baseline Model 

Population Dynamics 

Our chosen approach enabled us to describe and reproduce baseline demographic projections 
over time. We aggregated raw Census data related to deaths, net migration, and population into 
specified age groups, based on a combination of disease-specific factors and the format in which 
incidence and mortality data were reported (see Appendix C). Using this aggregated data, we 
defined inflow rates (including births and net migration) and outflow rates (including predicted 
deaths by age group) to create Census-based projections. For projected births, we used annual 
totals aggregated across all demographics (e.g., race), without further breakdown by factors such 
as gender or age group. For deaths and net migration, the data were aggregated by specified age 
groups, ensuring that projections accounted for demographic categories such as race and gender 
within those groups. Finally, total population projections were compiled to support model 
development, providing key insights into population dynamics across age groups and 
demographic factors as they evolve over time. 

Following a self-consistency verification, we used our forecast for total deaths by age group 
from 2024 to 2040 to extract mortality scaling factors for each age group, 𝑠(𝑡). Here, 𝑡 
represents the time in years since our initial year of 2024. Initially, 𝑠(𝑡 = 0) is set to one for 
2024, meaning no adjustment is needed for the base year. As we project into future years, 𝑠(𝑡) 
adjusts to reflect changing mortality trends. Mathematically, the scaling factor 𝑠(𝑡) is given by 

𝑠(𝑡) =
()
() 

⋅ () 
()

, where 𝑁(𝑡) and 𝐷(𝑡) are Census-provided populations and deaths in age

group 𝑖 in year 𝑡. By definition, 𝑠(0) = 1 for all age groups. These scaling factors are integrated 
into our ODE model to adapt mortality rates over time, ensuring that our model accurately 
reflects projected demographic dynamics and is consistent with actual population trends. 
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We also incorporated U.S. life tables from the Human Mortality Database to estimate aging 
rates and for verification purposes (Human Mortality Database, undated-a). While the Census 
provides annual predictions of deaths by age, offering detailed insights into demographic trends 
over time, the U.S. life tables offer comprehensive mortality data adjusted for underreporting, 
age misreporting, and other biases, ensuring accurate mortality rates across different age groups. 
These tables also aggregate mortality data for both genders, providing gender-neutral mortality 
rates essential for demographic modeling. We estimated the aging rate for how individuals 
transition from one age group to the next, 𝛼 by computing 𝑙  , which represents the number of 
individuals out of 100,000 who survive to each age 𝑥, based on the life table mortality rate 𝑚 
for each year. By summing these 𝑙  values for each age group, we determine the total number of 
survivors within that group, ensuring that we account for the cumulative survival of the cohort up 
to that age. The proportion for the last age in each group indicates the annual fraction of 
individuals aging out of that age group transitioning to the next. 

Informing the Disease-Specific Rates 

After establishing the baseline demographic rates in our model, the next step involves 
incorporating disease-specific inputs, including initial conditions (i.e., the populations of healthy 
individuals and those diagnosed with the disease) and transition rates for each age group. After 
estimating disease prevalence, we distributed the total population 𝑁(0) of each age group into 
those diagnosed with the disease, denoted as 𝑇(0), and the healthy population, denoted as 𝐻(0). 
Therefore, the prevalence for age group 𝑖 is simply given by 𝑇(0)/𝑁(0). 

Equally important to establishing baseline inputs is determining the initial disease-specific 
mortality rates, 𝜇(0), and hazard rates, 𝜆(0), for each age group. These rates are pivotal for 
forecasting how disease prevalence will evolve over time. We derived the disease-specific 
mortality rates from various sources and adjusted to match our age groupings (see Appendix C). 

Having obtained the initial values for 𝑇(0) and 𝐻(0) from the prevalence data and the 
disease-specific mortality rates, 𝜇(0), for each age group, we proceeded to estimate the initial 
age group-specific all-other-cause mortality rates, 𝜇(0). This estimation was derived from the 

all-cause mortality given by the Census data, denoted as ()
()

, which must equal the sum of all-

other-cause mortality applied to the healthy population 𝐻(0) and the combined all-other-cause 
and disease-specific mortality applied to the diseased population 𝑇(0). Mathematically, this 
relationship is expressed by equation (5): 

𝜇(0)𝐻(0) + [𝜇(0) + 𝜇(0)]𝑇(0) = 𝐷(0) (5). 

This equation essentially balances the contributions of mortality from other causes (i.e., not 
the disease of interest) from both the healthy population (𝐻) and the diagnosed population (𝑇) 
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against the total deaths (𝐷) observed in the initial year. Solving this equation (equation (6)) 
provides an estimate of the initial all-other-cause mortality 𝜇(0), which is crucial for 
accurately modeling the overall mortality dynamics within each age group in subsequent years. 

𝜇(0) = ()()()
() 

(6). 

Incidence data, or historic data on prevalence trends by age group, can be used to estimate 
the initial hazard rates 𝜆(0). When further accounting for demographic aging dynamics, this 
relationship is mathematically expressed by equation (7): 

[𝜇(0) + 𝜇(0) + 𝛼]𝑇(0) = 𝜆(0)𝐻(0) + 𝛼𝑇(0) (7) 

Rearranging this equation, we have equation (8), 

𝜆(0) = {[𝜇(0) + 𝜇(0) + 𝛼]𝑇(0) − 𝛼𝑇(0)}/𝐻(0) (8) 

Having obtained the baseline initial disease-specific mortality rates, 𝜇(0), all-other-cause 
mortality rates, 𝜇(0), and hazard rates, 𝜆(0), for each age group, we then project these values 
for future years. To ensure consistency with Census population projections, we assume that the 
relationship (or ratio) of disease prevalence between the age groups remains stationary over time. 
Under this assumption, the projected values for each future year 𝑡 are given by: 𝜇(𝑡) = 
𝑠(𝑡)𝜇(0), 𝜇(𝑡) = 𝑠(𝑡)𝜇(0) and 𝜆(𝑡) = 𝑠(𝑡)𝜆(0). Here, 𝑠(𝑡) is the scaling factor that 
adjusts for changes in overall mortality trends observed in the Census data for age group 𝑖. By 
applying these scaling factors, we ensure that our model remains aligned with demographic 
dynamics and accurately reflects future population changes. 

Verification of Population Dynamics, Initial Conditions, and Baseline Rates 
Input 

We conducted a self-consistency verification that involved comparing the population growth 
dynamics derived from integrating births, deaths, migration, and aging data against historic 
Census-provided population growth data. We found that errors across all age groups remained 
within ±2 percent, and over time the positive and negative errors balanced each other out, 
confirming that our demographic projections closely match Census data by the end of the study 
period and validating this aspect of our model. 

We also conducted a self-consistency verification of the initial conditions and baseline rates. 
We used the initial conditions along with all our initial baseline rate inputs and their expected 
changes over time and entered these into our model with numerically integrated model ODEs. 
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This aimed to ensure that the ODE-generated population dynamics were consistent with the 
Census projections. We found excellent agreement between the model’s projections and the 
Census data with errors ± 0.3 percent. 

Fine-Tuning Incidence Rates for 2024 Baseline Prevalence Projections 

In our modeling of the four diseases, we fine-tuned the baseline scenario (i.e., no climate 
change effects) incidence rates to ensure that our 2040 prevalence estimates aligned closely with 
other models available in the literature that forecast future disease prevalence without 
incorporating the impact of climate change. To achieve target 2040 prevalence for the baseline 
scenario, we modified incidences rather than mortalities, as disease-specific mortality data are 
generally more precise than incidence data. Here are the specific adjustments made for each 
disease, as shown in Table 3.1. 

• For CVD, we adjusted the estimated incidence rate to reflect a projected increase in
prevalence from 9.8 percent in 2015 to 14.0 percent in 2040. This adjustment corresponds
to a 43-percent increase in prevalence from the 2024 baseline scenario to 2040 (i.e., 14.0
percent/9.8 percent) (Ortendahl et al., 2019).

• For asthma, we adjusted the estimated incidence rate to reflect an assumed 5 percent
increase in prevalence by 2040 relative to 2024 in the baseline scenario. This estimate
was informed by existing projections that forecast a rise in asthma prevalence among
people under age 18 from 8 percent to 14 percent by 2090 (Neumann et al., 2019). Using
the upper bound estimate (14 percent), we assumed a linear trend and estimated a 5
percent increase by 2040.

• For ESRD, we adjusted the incidence rate to reflect an assumed 34-percent increase in
prevalence from the 2024 baseline scenario to 2040 based on global trends and adjusted
for the specific demographic and health care context of the United States (CDC, 2023;
GBD Chronic Kidney Disease Collaboration, 2020).

• For Alzheimer’s disease, we adjusted the incidence rate to reflect an assumed 45-percent
increase in prevalence by 2040 relative to 2024 in the baseline scenario. This projection
was based on global trends and adjusted for the specific demographics and health care
context of the United States (Institute for Health Metrics and Evaluation, undated;
Akushevich et al., 2023).
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Appendix C. Model Inputs and Transformations 

The text below describes the sources, transformations, and assumptions for all the inputs to 
the model. 

Global Temperature Projections 

No changes from source (Fyfe et al., 2021). Global temperature projections are drawn from 
five illustrative climate change scenarios. Emissions estimates vary between the scenarios 
depending on socio-economic assumptions, levels of climate change mitigation, and air pollution 
controls. 

Global Temperature Changes Projections Relative to 2024 

Because our model treats 2024 as the baseline year, we converted the global temperature 
projections corresponding to each climate change scenario used in the model into a relative value 
to the 2024 temperature. We achieved this for each scenario by subtracting the temperature for 
2024 from the temperature values for all subsequent years up to 2040. 

Temperature-Climate Links 

Relationship between Global and U.S. temperatures: EPA (undated-c) provided 
temperature data dating back to 1901 for changes in U.S. and global mean temperatures relative 
to each of their respective long-term average temperatures. These two series were converted 
from Fahrenheit to degrees Celsius. 

Following this conversion, we constructed a linear regression as follows with change in U.S. 
mean annual temperature as the outcome variable: 

𝑈𝑆 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 = 𝛽 ∗ 𝐺𝑙𝑜𝑏𝑎𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑒𝑟𝑟𝑜𝑟 

The coefficient β1 represents the change in the mean annual U.S. temperature for a 1-degree 
Celsius increase in the mean annual global surface temperature. 

U.S. temperature changes and extreme heat days: EPA (undated-a) provided decadal data 
for the average annual heatwave frequency, duration, season, and intensity. To get the average 
number of extreme heat days in a year, we used the following equation: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑛𝑛𝑢𝑎𝑙 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 ℎ𝑒𝑎𝑡 𝑑𝑎𝑦𝑠 = 𝐴𝑛𝑛𝑢𝑎𝑙 ℎ𝑒𝑎𝑡 𝑤𝑎𝑣𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 𝐴𝑛𝑛𝑢𝑎𝑙 ℎ𝑒𝑎𝑡 𝑤𝑎𝑣𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

Following this calculation, we constructed a linear regression as follows with the number of 
extreme heat days as the outcome variable: 



46 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑛𝑢𝑎𝑙 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 ℎ𝑒𝑎𝑡 𝑑𝑎𝑦𝑠 = 𝛽 ∗ 𝑈𝑆 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑒𝑟𝑟𝑜𝑟 

The coefficient β2 represents the change in the annual number of extreme heat days for a 1- 
degree Celsius increase in the mean annual U.S. temperature. 

U.S. temperature changes and hurricanes: EPA (undated-b) provided data for the annual 
incidence of hurricanes that make landfall in the United States. We constructed a linear 
regression as follows with the number of hurricanes making landfall in the United States as the 
outcome variable: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒𝑠 𝑚𝑎𝑘𝑖𝑛𝑔 𝑙𝑎𝑛𝑑𝑓𝑎𝑙𝑙 𝑖𝑛 𝑡ℎ𝑒 𝑈𝑛𝑖𝑡𝑒𝑑 𝑆𝑡𝑎𝑡𝑒𝑠 
= 𝛽 ∗ 𝑈𝑆 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑒𝑟𝑟𝑜𝑟 

The coefficient β3 represents the change in the annual number of hurricanes making landfall 
in the United States for a 1 degree Celsius increase in the mean annual U.S. temperature. 

U.S. temperature changes and air quality: Our chosen metrics for measuring air quality 
are the concentration of particulate matter (PM2.5) and ground-level ozone. However, when 
observing the raw temporal trends for these two pollutants, we observed an overall decline due to 
improving overall air quality in the recent past. Wildfires, which have a demonstrated link to 
climate change (U.S. Geological Survey, undated), are linked to increased emissions of 
particulate matter and ozone. Therefore, instead of directly relating temperature rise in the 
United States with PM2.5 and ozone, we related temperature increases with wildfire extent as a 
first step, and then related changes in wildfire extent to changes in the concentration of PM2.5 
and ground-level ozone. 

1. EPA (undated-e) provided annual data for wildfire extent in acres and we converted this
series into millions of acres by dividing each datapoint by 1,000,000. Then we
constructed a linear regression as follows with wildfire extent as the outcome variable:

𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒 𝑒𝑥𝑡𝑒𝑛𝑡 = 𝛽 ∗ 𝑈𝑆 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑒𝑟𝑟𝑜𝑟 

The coefficient β4 represents the change in wildfire extent in millions of acres for a 1-
degree Celsius increase in the mean annual U.S. temperature. 

2. Next, we found a model (Burke et al., 2021) in the literature that suggested that 25
percent of PM2.5 emissions in 2020 were attributable to wildfires. We assumed that there
is a linear relationship between wildfire extent and PM2.5 emissions, and thus divided
EPA’s PM2.5 concentrations for 2020 (EPA, undated-f) by the wildfire extent in 2020 (in
millions of acres), and then multiplied the results by 0.25 to estimate PM2.5 emissions
produced per million acres burnt by wildfires. We divided the result by 10 to standardize
the change in PM2.5 concentration to 10s of µg/m3 which are the units used between
exposure to PM2.5 and all-cause mortality, disease mortality, and disease incidence. For
simplicity, we assumed that the ratio of wildfire extent to PM2.5 emissions will remain
stable and PM2.5 will change linearly as wildfire extent changes in response to climate
change.

3. We found another model (Jaffe et al., 2008) in the literature that estimated an increase in
ground-level ozone emissions by 2 parts per billion (ppb) for every million acres of
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wildfire extent. We divided this result here by 10 to standardize the units to 10s of ppb. 
We have assumed a static relationship between wildfire extent and ground-level ozone 
for simplicity. 

Baseline Medical Conditions 

Cardiovascular Disease 

In alignment with the data sources, we used six input age groups for this model: 18–24, 25– 
44, 45–54, 55–64, 65–74, and 75+ years. 

1. CVD mortality: To calculate the baseline mortality for CVD, we used data from the 
CDC’s WONDER system that tracks mortality statistics (CDC, undated-c). We filtered 
the data by cause of death corresponding to ICD Chapter I00-I00 codes (Diseases of the 
Circulatory System) and age. For age, we chose to filter by single-year age groups in 
order to standardize the age groups with the CVD prevalence data sourced from 
elsewhere. We then collated the data from single-year age groups to create larger age 
groups. For instance, the source returned the deaths and total population for individuals 
aged 18 years, 19 years, 20 years etc. We created the age group 18-24 by summing up the 
total deaths among the single age-groups between age 18 and age 24, summing the total 
population of the single-year age groups between age 18 and age 24, then divided the 
former by the latter and multiplied by 100,000 to get the average mortality rate for age 
group 18–24 in terms of deaths per 100,000 individuals. This process was repeated to 
create all the CVD mortality age groups. However, since the age groups created using 
these data did not necessarily line up with the age groups we were using in our model, we 
needed to interpolate and obtain mortality rates for our chosen groups. This was done by 
fitting our mortality rates as calculated from the CDC data to a polynomial. The dataset 
did not report population statistics for individuals 85 and older. Therefore, we applied the 
death rate for ages 75 to 84 to individuals aged 85+ years. 

2. CVD incidence: We were unable to find data on CVD incidence, however historic 
prevalence data by age group shows that CVD prevalence has remained relatively 
stationary over the past decade. Based on this information, and assuming stationary 
demographic dynamics, we assumed that the deaths that deplete the CVD-diagnosed 
population would need to be balanced by the equivalent inflow of newly diagnosed 
(incident) CVD cases. Therefore, we chose to use CVD baseline mortality estimates as a 
proxy for CVD baseline incidence in the model. 

3. CVD prevalence: We used self-reported prevalence data from the CDC (undated-e), 
which reported the prevalence of CVD for each age group in percentage of adults. The 
CDC data were not provided according to the same age groups as our model; therefore, 
we used a fourth-order polynomial fitting technique to adjust the CDC prevalence data to 
align with our age groups. We converted this series to cases per 100,000 individuals by 
multiplying each datapoint by 1,000. 

End-Stage Renal Disease 

In alignment with the data sources, we used five input age groups for this model: 0–17, 18– 
44, 45–64, 65–74, and 75+ years. 
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1. ESRD mortality: For the baseline mortality of ESRD, we used the mortality rate in deaths 
per 1,000 person-years from the U.S. Renal Data System’s 2023 Annual Data Report 
(NIDDK, undated-a; NIDDK, 2023). Data from the U.S. Renal Data System were not 
provided according to the same age groups as our model; therefore, we used a fourth-
order polynomial fitting technique on the logarithm of mortality rates to adjust the ESRD 
mortality data to align with our age groups. The report mentioned that the majority of 
patients were observed for a period of one year, so we assumed this mortality rate to be 
equivalent to deaths per 1,000 patients. We converted this estimate into individual deaths 
by dividing each mortality rate by 1,000, then multiplied the results by the corresponding 
prevalence of ESRD for each age group in cases per 100,000 individuals. Mortality data 
were unavailable for the 0–17 years age group. 

2. ESRD incidence: For the baseline incidence of ESRD, we used incidence data from the 
U.S. Renal Data System’s 2023 Annual Data Report (NIDDK, undated-a; NIDDK, 
2023). We converted this series to cases per 100,000 individuals by dividing each 
datapoint by 10 for each age group. Data from the U.S. Renal Data System were not 
provided according to the same age groups as our model; therefore, we used a fourth-
order polynomial fitting technique to adjust the U.S. Renal Data System prevalence data 
to align with our age groups. 

3. ESRD prevalence: For the baseline prevalence of ESRD, we used prevalence data from 
the U.S. Renal Data System’s 2023 Annual Data Report (NIDDK, undated-a; NIDDK, 
2023). We converted this series to cases per 100,000 individuals by dividing each 
datapoint by 10 for each age group. Data from the U.S. Renal Data System were not 
provided according to the same age groups as our model; therefore, we used a fourth-
order polynomial fitting technique to adjust the U.S. Renal Data System prevalence data 
to align with our age groups. 

Asthma 

In alignment with the data sources, we used seven input age groups for this model: 0–4, 5– 
14, 15–19, 20–24, 25–34, 35–64, and 65+ years. 

1. Asthma mortality: To calculate the baseline mortality for asthma, we used CDC 
underlying cause of death data (CDC, undated-c), for ICD-10 codes J45–J46 (asthma). 
We converted this series from the death rate per 1,000,000 individuals to deaths per 
100,000 individuals by dividing each datapoint by 10. 

The age cutoffs differed between the prevalence and mortality data for the age groups 
5–14, 15–19, and 20–24 years, and the age groups 5–11, 12–17, and 18–24 years, 
respectively. We assumed that these data would not differ significantly, therefore we used 
the age groups from the prevalence dataset for the mortality data in the model. The CDC 
data were not provided according to the same age groups as our model; therefore, we 
used a fourth-order polynomial fitting technique on the logarithm of mortality rates to 
adjust the asthma mortality data to align with our age groups. 

2. Asthma incidence: We were unable to find data on asthma incidence, however historic 
prevalence data by age group show that asthma prevalence has remained relatively 
stationary over the past decade. Based on this information, and assuming stationary 
demographic dynamics, we assumed that the deaths that deplete the asthma-diagnosed 
population would need to be balanced by the equivalent inflow of newly diagnosed 
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(incident) asthma cases. Therefore, we chose to use asthma baseline mortality estimates 
as a proxy for asthma baseline incidence in the model. 

3. Asthma prevalence: To calculate baseline prevalence of asthma, we used self-reported
prevalence data from the CDC (CDC, undated-d) for each age group in percentage of
individuals. We assumed this to equate to cases per 100 individuals and converted this
series to cases per 100,000 individuals by multiplying each datapoint by 1,000. The CDC
data were not provided according to the same age groups as our model; therefore, we
used a fourth-order polynomial fitting technique to adjust the CDC prevalence data to
align with our age groups.

Alzheimer’s Disease 

We sourced the mortality, prevalence, and incidence data for Alzheimer’s disease from the 
Alzheimer’s Association’s “Alzheimer’s Disease Facts and Figures” report (2024). Data were 
available for all three disease characteristics for the 65–74, 75–84 and 85+ years age groups. The 
source also provided mortality data for the 45–54 and 55–64 years age groups, and prevalence 
data for the 30–64 years age group. 

1. Alzheimer’s disease mortality: Our source provided mortality data in deaths per 100,000
individuals and no further transformations were required.

2. Alzheimer’s disease incidence: Our source recorded incidence data for Alzheimer’s
disease in percentage of individuals, which we interpreted as cases per 100 individuals.
To convert these figures into cases per 100,000 individuals, we multiplied each incidence
data point by 1,000.

3. Alzheimer’s disease prevalence: For age groups 65–74, 75–84, and 85+ years, prevalence
data were recorded in percentage of individuals, which we interpreted as cases per 100
individuals. To convert these data into cases per 100,000 persons, we multiplied each
datapoint by 1,000. The source also reported the prevalence for age group 30–64 years in
cases per 100,000 individuals, so no further transformations were required.

Disease-Climate Links 

Hurricane affected proportion of the U.S. population: To account for the proportion of 
the United Stated that is affected by hurricanes, we developed a scaling factor to adjust each of 
the hurricane-related inputs below by the proportion of the total U.S. population (328.24 million) 
(Johnson, 2019) that resides in the most hurricane-prone regions (60.2 million) (Cohen, 2019) 
according to 2019 U.S. Census estimates, as below: 

60.2 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 
328.24 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 

= 0.185534974 

We assumed that the populations of both the hurricane-prone regions and the United States as 
a whole will grow at similar rates and that this proportion will remain constant over the study 
period. 
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Climate and All-Cause Mortality 

1. Extreme heat: We found a source in the literature (Anderson and Bell, 2011) that 
reported a 3.74 percent (95% CI 2.29–5.22) increase in all-cause mortality due to a heat 
wave. To obtain the percentage increase in all-cause mortality for each extra day of 
extreme heat, we divided by the average length of a heatwave in the 2020s (4.3 days) 
(Johnson, 2019; EPA, undated-a). 

2. Hurricanes: We found a source in the literature (Huang et al., 2023) that reported the 
relative risk for deaths due to exposure to a cyclone or hurricane as 1.09 (95% CI 1.04– 
1.13), which can be interpreted as an estimated increase in the risk of mortality of 9 
percent, with the true mortality risk most likely falling between 4 and 13 percent. To 
account for the affected proportion of the United States, we scaled down by multiplying 
these figures by 0.185534974. 

3. PM2.5: We found a source in the literature (Wang et al., 2020) that reported the relative 
risk for total deaths due to exposure to an additional 10 µg/m3 of PM2.5 as 1.05 (95% CI 
1.044–1.056). These can be interpreted as an estimated increase in mortality risk of 5 
percent, with the true risk of mortality most likely falling between 4.4 and 5.6 percent. 

4. Ozone: We found a source in the literature (Kim, Kim, and Kim, 2020) that reported the 
hazard ratio for total deaths due to exposure to an additional 10 ppb of ozone as 1.01 
(95% CI 1.01–1.01). These can be interpreted as an estimated increase in mortality of 1 
percent, with the true value most likely also falling within the 1 percent range. Due to the 
need to provide a varied confidence interval for sampling during the simulations, we 
adjusted the upper and lower bounds of the percentage interpretation to 0.99 percent to 
1.01 percent, respectively. 

Climate and Cardiovascular Disease Mortality 

1. Extreme heat: We found a source in the literature (Khatana, Werner, and Groeneveld, 
2022) that reported the percent increase in CVD mortality due to exposure to an 
additional day of extreme heat as 0.12 percent (95% CI 0.04–0.21). 

2. Hurricanes: We found a source in the literature (Huang et al., 2023) that reported the 
relative risk for CVD-related deaths due to exposure to a cyclone or hurricane as 1.14 
(95% CI 0.99–1.3), which can be interpreted as an estimated increase in the risk of 
mortality of 14 percent per cyclone or hurricane. To account for the affected proportion 
of the United States, we scaled down by multiplying these figures by 0.185534974. 

3. PM 2.5: We found a source in the literature (Manisalidis et al., 2020) that reported the 
relative risk for cardiovascular deaths due to exposure to an additional 10 µg/m3 of 
PM2.5 as 1.088 (95% CI 1.078–1.098), which can be interpreted as an estimated increase 
in the risk of mortality of 8.8 percent, with the true increased risk of mortality most likely 
falling between 7.8 percent to 9.8 percent. 

4. Ozone: We found a source in the literature (Wang et al., 2020) that reported the hazard 
ratio for CVD-related deaths due to exposure to an additional 10 ppb of ozone as 1.03 
(95% CI 1.01–1.06), which can be interpreted as an estimated increase in mortality of 3 
percent, with the most likely true increase in mortality falling between 1 percent to 6 
percent. 
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Climate and Cardiovascular Disease Incidence 

1. Extreme heat: We found a source in the literature (Singh et al., 2024) that reported the 
relative risk of CVD morbidity due to a heat wave as 1.008 (95% CI 0.998–1.017), which 
can be interpreted as an estimated increase of 0.8 percent, with the true change in 
morbidity most likely falling between–0.2 percent and 1.7 percent. To obtain the 
percentage increase in all-cause mortality for each extra day of extreme heat, we divided 
these figures by the average length of a heatwave in the 2020s (4.3 days). 

2. Hurricanes: We were unable to find data that directly related hurricanes to changes in the 
incidence of CVD. However, we did find a source in the literature (Swerdel et al., 2014) 
that reported the attributable rate ratio of myocardial infarctions specifically due to 
hurricanes or cyclones as 1.22 (95% CI 1.16–1.28), which we assume to be similar to the 
percentage increase in CVD overall. Therefore, these figures can be interpreted as an 
increase in CVD incidence of 22 percent, with the true increase in CVD incidence most 
likely falling between 16 percent and 28 percent. To account for the affected proportion 
of the United States, we scaled down by multiplying these figures by 0.185534974. 

3. PM2.5: We found a source in the literature (Xi et al., 2022) that reported the hazard ratio 
for CVD incidence due to exposure to an additional 10 µg/m3 of PM2.5 as 1.03 (95% 
CI1.02–1.04), which can be interpreted as an estimated increase in CVD incidence of 3 
percent, with the true change in CVD incidence most likely falling between 2 percent and 
4 percent. 

4. Ozone: We found a source in the literature (Wu et al., 2022) that reported the percentage 
increase in CVD incidence due to exposure to an additional 10 ppb of ozone as 1.42 
percent (95% CI 0.14–2.73). 

Climate and End-Stage Renal Disease Mortality 

1. Extreme heat: We found a source in the literature (Blum et al., in press) that reported the 
hazard ratio of ESRD mortality due to an extreme heat event as 1.18 (95% CI 1.15–1.20). 
This can be interpreted as an increase in ESRD mortality of 18 percent, with the true 
increase in mortality most likely falling between 15 percent and 20 percent. To obtain the 
percentage increase in ESRD mortality for each extra day of extreme heat, we divided 
these figures by the average length of a heatwave in the 2020s (4.3 days) according to the 
EPA (undated-a). 

2. Hurricanes: We found a source in the literature (Blum et al., 2022) that reported the 
hazard ratio for ESRD-related deaths due to exposure to a cyclone or hurricane as 1.13 
(95% CI 1.06–1.22), which can be interpreted as an estimated increase in mortality of 13 
percent, with the true increase in mortality most likely falling between 6 percent and 22 
percent. To account for the affected proportion of the United States, we scaled down by 
multiplying these figures by 0.185534974. 

3. PM2.5: We found a source in the literature (Xi et al., 2020) that reported the relative risk 
for ESRD-related deaths due to exposure to an additional 10 µg/m3 of PM2.5 as 1.01 
(95% CI 1.001–1.019), which can be interpreted as an estimated increase in mortality of 
1 percent, with the true risk of death most likely falling between 0.1 percent and 1.9 
percent. 

4. Ozone: We found a source in the literature (Kim et al., 2024) that reported the hazard 
ratio for ESRD-related deaths due to exposure to an additional 10 ppb of ozone as 1.012 



52 

(95% CI 1.008–1.017), which can be interpreted as an estimated increase in mortality of 
1.2 percent, with the true value most likely falling between 0.8 percent and 1.7 percent. 

Climate and End-Stage Renal Disease Incidence 

1. Extreme heat: We were unable to find data that directly related change in the incidence of 
ESRD with heat waves. However, we did find a source in the literature (Bobb et al., 
2014) that reported the relative risk of ESRD-related hospitalizations due to a heat wave 
as 1.14 (95% CI 1.06–1.23), which we interpreted as an increase in ESRD-related 
morbidity of 14 percent. To obtain the percentage increase in ESRD incidence for each 
extra day of extreme heat, we divided these figures by the average length of a heat wave 
in the 2020s (4.3 days) according to the EPA (undated-a). 

2. Hurricanes: We found a source in the literature (Howard et al., 2012) that reported the 
percentage of excess renal-related hospitalizations due to a hurricane as 3 percent (95% 
CI 2.86–3.7). To account for the affected proportion of the United States, we scaled down 
by multiplying these figures by 0.185534974. 

3. PM2.5: We found a source in the literature (Wathanavasin et al., 2024) that reported the 
odds ratio for ESRD incidence due to exposure to an additional 10 µg/m3 of PM2.5 as 
1.16 (95% CI 1.00–1.36), which can be interpreted as an estimated increase in incidence 
of 16 percent, with the true change most likely falling between of 0 percent and 36 
percent. 

4. Ozone: We found a source in the literature (Kim et al., 2024) that reported the hazard 
ratio for ESRD incidence due to exposure to an additional 10 ppb of ozone as 1.049 (95% 
CI 1.044–1.054), which can be interpreted as an estimated increase in incidence of 4.9 
percent, with the true change most likely falling between 4.4 percent and 5.4 percent. 

Climate and Asthma Mortality 

1. Extreme heat: We found a source in the literature (Cheng et al., 2019) that reported the 
relative risk of asthma mortality due to a heat wave as 1.08 (95% CI 1.01–1.160) which 
can be interpreted as an estimated increase in asthma mortality of 8 percent, with the true 
change most likely falling between 1 percent and 16 percent. To obtain the percentage 
increase in asthma-related mortality for each extra day of extreme heat, we divided these 
figures by the average length of a heatwave in the 2020s (4.3 days) according to the EPA 
(undated-a). 

2. Hurricanes: We found a source in the literature (Huang et al., 2023) that reported the 
percentage change in respiratory deaths due to exposure to a cyclone or hurricane as 1.3 
percent (95% CI 0.2–2.4). To account for the affected proportion of the United States, we 
scaled down by multiplying these figures by 0.185534974. 

3. PM2.5: We found a source in the literature (Song et al., 2022) that reported the 
percentage change in asthma-related deaths due to exposure to an additional 10 µg/m3 of 
PM2.5 as 2.39 percent (95% CI 0.05–4.78). 

4. Ozone: We found a source in the literature (Kim, Kim, and Kim, 2020) that reported the 
hazard ratio for asthma-related deaths due to exposure to an additional 10 ppb of ozone as 
1.04 (95% CI 1.01–0.07), which can be interpreted as an estimated increase in mortality 
of 4 percent, with the true change most likely falling between 1 percent and 7 percent. 
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Climate and Asthma Incidence 

1. Extreme heat: We were unable to find data that directly measured the relationship 
between extreme heat and change in asthma incidence, therefore we used a source in the 
literature (Soneja et al., 2016) that reported the odds ratio of same-day hospitalizations 
for asthma due to an extreme heat day as 1.03 (95% CI 1.00–1.07), which can be 
interpreted as an estimated increase in asthma morbidity of 3 percent, with the true 
change most likely falling between 0 percent and 7 percent. 

2. Hurricanes: We were unable to find data that directly measured the relationship between 
extreme heat and change in asthma incidence, therefore we used a source in the literature 
(Makrufardi et al., 2023) that reported the relative risk for asthma events due to exposure 
to a cyclone or hurricane as 1.5 (95% CI 0.93–2.43), which can be interpreted as an 
estimated increase in asthma morbidity of 50 percent, with the true change in morbidity 
most likely falling between -7 percent and 143 percent. To account for the affected 
proportion of the United States, we scaled down by multiplying these figures by 
0.185534974. 

3. PM2.5: We found a source in the literature (Khalili et al., 2018) that reported the odds 
ratio for asthma diagnosis due to exposure to an additional 5.9 µg/m3 of PM2.5 as 1.08 
(95% CI 1.0–1.15), which can be interpreted as an estimated increase in asthma incidence 
of 8 percent, with the true change in incidence most likely falling between 0 percent and 
15 percent. To obtain the change in incidence due to exposure to an additional 10 µg/m3 

of PM2.5, we divided these figures by 5.9 and multiplied the results by 10. 
4. Ozone: We were unable to find data that directly measured the relationship between 

exposure to ozone and change in asthma incidence, therefore we used a source in the 
literature (Li et al., 2019) that reported the relative risk for asthma exacerbations due to 
exposure to an additional 10 µg/m3 of ozone as 1.014 (95% CI 1.005–1.024). These can 
be interpreted as an estimated increase in asthma incidence of 1.4 percent, with the true 
change in asthma incidence most likely falling between 0.5 percent and 2.4 percent. To 
standardize the units to 10 ppb of ozone, we multiplied these figures by 1.996 as 1 ppb of 
ozone is equivalent to 1.996 µg/m.3 

Climate and Alzheimer’s Disease Mortality 

1. Extreme heat: We found a source in the literature (Yin et al., 2023) that reported the 
relative risk of death due to an extreme heat day among patients with Alzheimer’s disease 
as 1.3 (95% CI 1.23–1.38), which can be interpreted as an estimated increase in 
Alzheimer’s mortality of 30 percent, with the true change in mortality risk most likely 
falling between 23 percent and 38 percent. 

2. Hurricanes: We found data in the literature (Bell et al., 2023) that reported the relative 
risk of death due to hurricane exposure among patients with Alzheimer’s disease or other 
related dementias as 1.08 (95% CI 1.07–1.09), which can be interpreted as an estimated 
increase in mortality among patients with Alzheimer’s disease of 8 percent, with the true 
change in risk of death most likely falling between 7 percent and 9 percent. To account 
for the affected proportion of the United States, we scaled down by multiplying these 
figures by 0.185534974. 

3. PM2.5: We were unable to find specific data for the effect of PM2.5 on the risk of death 
among patients with Alzheimer’s disease, but we found a study in the literature (Wang et 
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al., 2022) that assessed the impact of PM 2.5 exposure on mortality among Medicare 
beneficiaries; since this population also accounts for the vast majority of Alzheimer’s 
patients, we assumed that the percentage changes in mortality due to the effect of PM2.5 
would be similar. The study reported the hazard ratio for total mortality due to exposure 
to an additional 2.63 µg/m3 of PM2.5 as 1.025 (95% CI 1.023–1.027), which estimates a 
mortality increase of 2.5 percent, with the true mortality change most likely falling 
between 2.3 percent and 2.7 percent. These units were standardized with our other PM2.5 
variables and converted into effect per 10 µg/m3 of PM2.5 by dividing by 2.63 and 
multiplying the results by 10. 

4. Ozone: We were unable to find specific data for the effect of ground-level ozone on 
Alzheimer’s patient mortality, but we found one study in the literature that assessed the 
impact of ozone exposure on dementia mortality (Zhao et al., 2021). We assumed that 
these percentage changes would be similar. This source reported the hazard ratio for 
dementia related deaths due to exposure to an additional 10.1 ppb of ozone as 1.08 (95% 
CI 1.06–1.10), which can be interpreted as an estimated increase in mortality of 8 
percent, with the true change in mortality most likely falling between 6 percent and 10 
percent. We divided the percentages by 10.1 and multiplied the results by 10 to convert 
them into effect per 10 ppb of ozone. 

Alzheimer’s Disease Incidence 

1. Extreme heat: We were unable to find data that directly investigated the impact of 
extreme heat exposure on Alzheimer’s disease incidence, however we found a source in 
the literature (Xu et al., 2019) that reported the percentage increase in Alzheimer’s-
related hospitalizations due to a heat wave as 51 percent (95% CI 2.0–126.0). To obtain 
the percentage increase in Alzheimer’s related hospitalizations for each extra day of 
extreme heat, we divided these figures by the average length of a heat wave in the 2020s 
(4.3 days) according to the EPA (undated-a). 

2. Hurricanes: We were unable to find data that directly investigated the impact of 
hurricane exposure on Alzheimer’s incidence, however, we found a source (Bell et al., 
2021) in the literature that reported the incidence rate ratio for all-cause hospital 
admissions among Medicare beneficiaries during a hurricane. We assume that these rates 
will be similar. The study reported the admissions rate ratio as 1.23 (95% CI 1.22–1.24), 
which can be interpreted as an estimated increase in of 23 percent, with the true change in 
admissions most likely falling between 22 percent and 24 percent. To account for the 
affected proportion of the United States, we scaled down by multiplying these figures by 
0.185534974. 

3. PM2.5: We found a source in the literature (Yang et al., 2022) that reported the hazard 
ratio for Alzheimer’s disease incidence due to exposure to an additional 10 µg/m3 of 
PM2.5 as 1.05 (95% CI 1.01–1.10), which can be interpreted as an estimated increase in 
the incidence of Alzheimer’s disease of 5 percent, with the true change in incidence most 
likely falling between 1 percent and 10 percent. 

4. Ozone: We found a source in the literature (Jung, Lin, and Hwang, 2015) that reported 
the hazard ratio for Alzheimer’s disease incidence due to exposure to an additional 9.63 
ppb of ozone as 1.06 (95% CI 1.00–1.12), which can be interpreted as an estimated 
increase in incidence of 6 percent, with the true change in incidence most likely falling 
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between 0 percent and 12 percent. We divided the percentages by 9.63 and multiplied the 
results by 10 to standardize the units to 10 ppb of ozone. 

Human Mortality Database U.S. Life Table 

We used data from the Total (both sexes), 1x1, Life Tables dataset as provided by the Human 
Mortality Database. No changes were made to the source data (Human Mortality Database, 
undated). 

U.S. Births 

To project births in the U.S. between 2024 and 2040, we used data from the “Projected Births 
by Sex, Race, and Hispanic Origin for the United States: 2023 to 2100” dataset as projected by 
the U.S. Census “2023 National Population Projections.” No changes were made to the source 
data (U.S. Census Bureau, undated). 

U.S. Deaths 

To project deaths in the U.S. between 2024 and 2040, we used data from the “Projected 
Deaths by Single Year of Age, Sex, Race, and Hispanic Origin for the United States: 2023 to 
2100” dataset as projected by the U.S. Census “2023 National Population Projections.” No 
changes were made to the source data (U.S. Census Bureau, undated). 

U.S. Net Migration 

To project net migration to the U.S. between 2024 and 2040, we used data from the 
“Projected Net International Migration by Single Year of Age, Sex, Race, and Hispanic Origin 
for the United States: 2023 to 2100” dataset as projected by the U.S. Census “2023 National 
Population Projections.” No changes were made to the source data (U.S. Census Bureau, 
undated). 

U.S. Total Population 

To project the total population of the U.S. between 2024 and 2040, we used data from the 
“Projected Population by Single Year of Age, Sex, Race, and Hispanic Origin for the United 
States: 2022 to 2100” dataset as projected by the U.S. Census “2023 National Population 
Projections.” No changes were made to the source data (U.S. Census Bureau, undated). 
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Appendix D. Projected Prevalences and Percentage Changes in 
Deaths by Age Group for Each Condition 

Figures D.1–D.4 show the projected prevalence from the initial year (2024) to the final year 
(2040) for each of the four sampled medical conditions, with each age group displayed in 
separate panels. The baseline prevalence trajectory is represented by a bold black line, indicating 
how the prevalence of each disease would change over time without the influence of climate 
change effects. The pink and purple bands illustrate the range of projected prevalence trajectories 
under the modeled climate change scenarios, from least severe to most severe. These scenarios 
incorporate varying inputs within their uncertainty ranges, describing how extreme weather 
events, influenced by climate change, affect incidence and mortality rates. The concentration of 
purple in the fan indicates where the median of these trajectories lies, and the pink areas depict 
the less likely trajectories. 

Figure D.1. CVD Prevalence Projections Compared to Baseline Under All Climate Change 
Scenarios by Age Group, 2024–2040 

NOTE: Pink and purple areas = range of projected prevalence estimates under selected climate scenarios; purple = 
more likely trajectory, pink = less likely trajectory. Bold black line = baseline scenario; blue lines = randomly selected 
model runs. 
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Figure D.2. Asthma Prevalence Projections Compared to Baseline Under All Climate Change 
Scenarios by Age Group, 2024–2040 

NOTE: Pink and purple areas = range of projected prevalence estimates under selected climate scenarios; purple = 
more likely trajectory, pink = less likely trajectory. Bold black line = baseline scenario; blue lines = randomly selected 
model runs. 
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Figure D.3. End-Stage Renal Disease Prevalence Projections Compared to Baseline Under All 
Climate Change Scenarios by Age Group, 2024–2040 

NOTE: Pink and purple areas = range of projected prevalence estimates under selected climate scenarios; purple = 
more likely trajectory, pink = less likely trajectory. Bold black line = baseline scenario; blue lines = randomly selected 
model runs. 
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Figure D.4. Alzheimer’s Disease Prevalence Projections Compared to Baseline Under All Climate 
Change Scenarios by Age Group, 2024–2040 

NOTE: Pink and purple areas = range of projected prevalence estimates under selected climate scenarios; purple = 
more likely trajectory, pink = less likely trajectory. Bold black line = baseline scenario; blue lines = randomly selected 
model runs. 
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Figures D.5–D.7 show projected percentage change in total deaths compared to the baseline 
scenarios under all climate change scenarios by age group from 2024 to 2040 for each of the 
conditions modeled. 

Figure D.5. Results of Cardiovascular Disease/Metoprolol Model: Projected Percentage Change in 
Total Deaths Compared to Baseline Under All Climate Change Scenarios by Age Group, 2024– 

2040 

NOTE: Blue and violet areas = range of projected total deaths under selected climate scenarios; violet = more likely 
trajectory, blue = less likely trajectory. Blue lines = randomly selected model runs. 
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Figure D.6. Results of Asthma/Albuterol Model: Projected Percentage Change in Total Deaths 
Compared to Baseline Under All Climate Change Scenarios by Age Group, 2024–2040 

NOTE: Blue and violet areas = range of projected total deaths under selected climate scenarios; violet = more likely 
trajectory, blue = less likely trajectory. Blue lines = randomly selected model runs. 
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Figure D.7. Results of End-Stage Renal Disease/Heparin Model: Projected Percentage Change in 
Total Deaths Compared to Baseline Under All Climate Change Scenarios by Age Group, 2024– 

2040 

NOTE: Blue and violet areas = range of projected total deaths under selected climate scenarios; violet = more likely 
trajectory, blue = less likely trajectory. Blue lines = randomly selected model runs. 
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Figure D.8. Results of Alzheimer’s/Donepezil Model: Projected Percentage Change in Total Deaths 
Compared to Baseline Under All Climate Change Scenarios by Age Group, 2024–2040 

NOTE: Blue and violet areas = range of projected total deaths under selected climate scenarios; violet = more likely 
trajectory, blue = less likely trajectory. Blue lines = randomly selected model runs. 
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Abbreviations 

AHRQ Agency for Healthcare Research and Quality 
BMI body mass index 
CDC Centers for Disease Control and Prevention 
CKD chronic kidney disease 
COPD chronic obstructive pulmonary disease 
COVID-19 coronavirus disease 2019 
CVD cardiovascular disease 
ED emergency department 
EPA Environmental Protection Agency 
ESRD end-stage renal disease 
FDA Food and Drug Administration 
GHG greenhouse gases 
HHS U.S. Department of Health and Human Services 
ICD International Classification of Diseases 
IPCC Intergovernmental Panel for Climate Change 
ODE ordinary differential equations 
PM2.5 particulate matter 2.5 
ppb parts per billion 
RRT renal replacement therapy 
SSP Shared Socioeconomic Pathway 
WHO World Health Organization 
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