
 1

Clinical Language Engineering
Workbench (CLEW)

Lessons Learned Document

August 2019

 2

Contents

CLEW Team Members ... 3

General Observations .. 4

Tools, Systems Development, and Testing ... 5

NLP and Machine Learning Pipeline and Model Development ... 6

The findings and conclusions in this report are those of the authors and do not necessarily represent the official
position of the author’s agencies (CDC, FDA). The authors have no conflicts of interest related to this work to
disclose.

 3

CLEW Team Members

Team Member Organizations Team Members
Center for Biologics Evaluation and Researcher
Food and Drug Administration

Taxiarchis Botsis – Project Co-Lead
Mark Walderhaug – Project Co-Lead
Kory Kreimeyer
Abhishek Pandey
Matthew Foster
Richard A. Forshee

Cancer Surveillance Branch
Division of Cancer Prevention and Control
Centers for Disease Control and Prevention

Sandy Jones – Project Co-Lead
Joe Rogers
Wendy Blumenthal
Temitope Alimi

Northrop Grumman Steve Campbell – Project Manager
Fred Sieling – Project Manager
Marcelo Caldas
Sanjeev Baral

Health Language Analytics Global
(sub-contract with Northrop Grumman)

Jon Patrick

Engility Corporation Wei Chen
Guangfan Zhang
Wei Wang

Vassar College
(sub-contract with Northrop Grumman)

Keith Suderman

 4

This report compiles lessons that were realized and captured while developing a natural language
process (NLP) workbench. The lessons have been separated into three categories that represent
overall general observations; tools, systems development, and testing; and NLP and machine
learning pipeline and model development.

General Observations

• A permanent, reliable, and cross-agency host server would allow for the Clinical
Language Engineering Workbench (CLEW) to be fully implemented, reviewed, tested,
and deployed across multiple domains. This project used CDC’s Research and
Development Lab servers that are not open to staff outside of CDC, including FDA and
contract staff, which required special access to complete the project.

• Software development collaboration across U.S. government agencies and other
organizations did not meet expectations of the project team including connectivity,
available software development tools, server hosting, scalability, administrative support,
and usage policy. CDC’s Informatics Innovation Unit (IIU) environment encountered
administrative delays, limited server hosting options and no plans for scalability. As a
solution, we switched to Amazon Web Services (AWS); however, there continued to be
challenges.

• Many open-source tools, frameworks, libraries, and applications exist. Integrating some
of those tools is not straightforward. The LAPPS Interoperability Format (LIF) helps in
this area, but it was still challenging to integrate UIMA-based tools such as cTAKES into
pipelines.

• Using modular architectures, development teams with diverse backgrounds can cooperate
to build a software ecosystem using RESTful APIs to coordinate modules across
Windows and Ubuntu operating systems, across multiple NLP and tool code bases, and
across CDC and FDA use cases.

• Two years was not enough time to complete this project. After the environmental scan,
literature review, and exploration of existing open-source tools and platforms, the two
agencies spent a significant amount of time conceptualizing the best approach to meet
varying NLP needs of researchers from across domains.

• Partnering for software development by directly funding an existing lead open-source
developer was valuable because it identified problem areas, exposed issues quickly, and
allowed faster progress.

• The cancer pathology use case for NLP requires ongoing commitment to develop
solutions that meet all government objectives including accuracy, utility across the cancer
community, and open source in the full software stack.

• NLP has made strides in multiple areas:

o Speech recognition.

 5

o Text-to-speech and speech-to-text conversions.

o Language translations.

o Sentiment analysis.

o Summarization.

o Most solutions focus on a generic corpora. When using medical materials, they do not
understand the specifics within a clinical domain.

Tools, Systems Development, and Testing

• For future development projects, it is critical that developers build and test code
frequently on an independent server configured for the target environment.

• A repository manager for developers would allow for storage of all dependencies and
common code in a centralized location. This would eliminate duplication of effort and
allow developers access to a library of code to perform tasks such as read/write UIMA
files and talk to LAPPS servers.

• Development of the format conversion from UIMA (cTAKES) to the LAPPS
Interoperability Format (LIF) was challenging due to size of the cTAKES type system.
The syntactic conversion was simple, but the semantic conversion of mapping the 270+
cTAKES types onto the handful of LAPPS types took a lot of consideration and input
from domain experts.

To incorporate cTAKES into the CLEW, a Java API had to be developed and made accessible as
either a web service or part of a domain-specific Java application. To accomplish this, we
attempted to incorporate cTAKES into a Maven project via a simple POM dependency.
However, a bug in cTAKES versions 4.0.0 and 4.0.1 prohibited it from being included as a
Maven POM dependency, causing a “URI is not hierarchical” Java exception when an
application attempted to load cTAKES through the POM mechanism. To resolve this issue, we
implemented a two-part solution that included making minor modifications to cTAKES source
code and generating a new JAR file to replace the distributed version, and placing additional
resource files into the “resources” directory of the target project structure. A revision to the
cTAKES source code would allow third-party developers to leverage cTAKES for integration
with their domain application.

• For a better user experience, additional programming in eMaRC Plus would allow for
handling cases that received a non-response or error from the CLEW service.

• Tweak the Cancer Coding Service after the CLEW is implemented.

• Quantitative estimation of NLP accuracy metrics via methods such as 10 fold cross-
validation requires a scalable computing platform like Jetstream, or at minimum, a cloud
provider like AWS to enable timely feedback.

 6

• Developer tips for creating an API definition and model:

o Create endpoints for a resource (not a function or remote procedure call). We used
/annotation as the endpoint.

o It is better to use HTTP verbs, such as the same root endpoint (/annotation) for both
the POST and GET methods. The POST method creates a new annotation, and the
GET method retrieves a given annotation.

o The POST method returns a status of 202 instead of 200, since the annotation is not
created immediately, but notifies the user that the report was “accepted or received”.
For future enhancements, a validation check can be implemented to notify the user
with a 400 code that the document is not acceptable.

o The GET method could return a 200 code when the annotation is ready and returned
to the user, or a 404 code if the document is not ready. Future development could
enable the server to keep better track of requests and return a 500 code if the
annotation failed or a 400 code if the document was not useable.

o The POST method could accept the document as a direct text/plain payload instead of
having to deal with xxx-form-url-encode.

o LAPPS is not flexible when it comes to creating production-grade pipelines for
execution, or support for training models. To implement each pipeline as a web
service, we had to recreate the entire pipeline as code. We had the option of calling
each task within LAPPS, but there was no benefit in doing so except when integrating
across different frameworks.

NLP and Machine Learning Pipeline and Model Development

• Supervised learning. This is difficult because it requires annotated corpora to train the
model. Subject matter experts (SMEs) in the field can create the annotated corpora,
which can be time-consuming and repetitive.

• Development of different NLP pipelines. We analyzed the behavior of different NLP
pipelines. We implemented corresponding post processors to correct errors and designed
feature sets for model training. In terms of future improvements in the development
process, the code could be more generalized to support various versions of Python,
including Python 2.7 and Python 3. In addition, the number of temporary output files
could be decreased to save disk memory for larger reports.

• Asynchronous API implementation. We implemented NLP services for each pipeline
using the full-batch model trained. The way of implementing asynchronous APIs was
learned from this project, where the transaction ID is returned instantly after a POST and
the result can be retrieved by doing a GET afterwards using the transaction ID. The
HTTP status code returned by POST and GET in different cases could be considered

 7

more specifically. Endpoints could be created for resources such as BIO file containing
features.

• CER result evaluation and experimental design. We produced a list of CER results for
various types of experiments including training on each batch, full-batch training, and
cross-batch testing. For future improvements, more experiments on feature engineering
could be conducted and more depth analysis could be done.

• Use cases. The use cases were defined to serve CDC’s and FDA’s most immediate needs.
This limited the arena of experimentation that was available given the time restrictions on
completing the project. A wider range of use cases would better test the infrastructure and
be better grounding for getting more services commissioned.

• Pilot project corpus. CDC’s pilot project corpus was deliberately selected to narrow the
task to a scale that was achievable in the time allowed. Four tumor streams were selected
with samples drawn from five data suppliers. A more narrow set of tumor streams with
more documents would have enabled more reliable results.

• Tag set. Defining the tag set is an important aspect of any project. The tag set can be
expanded significantly to serve broad-scale coding solutions.

• An iterative modeling process for corpus annotation. Two staff performed the corpus
annotation over a five-month period using an iterative modeling process that developed
the language model in concert with their annotations. This process proved effective in
completing the annotation process more rapidly.

• Performance standards. The language models were trained on batches separated by data
providers. They showed significantly different performance standards: models trained on
one provider’s data could achieve as little as 15% accuracy on another provider’s data.
This emphasized the importance of building models with careful distribution across all
data sources.

• Unreliable outputs for pathology reports. Analysis of the output of components in
standard NLP pipelines showed that they produced unreliable outputs for pathology
reports, creating the need for post processors to correct their most common systematic
mistakes.

• Testing on a variety of pipelines. Testing the various NLP pipelines showed that
CTAKES—which is specifically designed to process clinical reports—failed to perform
better than standard NLP pipelines. This indicates a need to experiment with a variety of
open-source pipelines.

	Contents
	CLEW Team Members
	General Observations
	Tools, Systems Development, and Testing
	NLP and Machine Learning Pipeline and Model Development

